Cargando…
Decomposition of multivariate function using the Heaviside step function
Whereas the Dirac delta function introduced by P. A. M. Dirac in 1930 to develop his theory of quantum mechanics has been well studied, a not famous formula related to the delta function using the Heaviside step function in a single-variable form, also given by Dirac, has been poorly studied. Follow...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447849/ https://www.ncbi.nlm.nih.gov/pubmed/26034693 http://dx.doi.org/10.1186/2193-1801-3-704 |
Sumario: | Whereas the Dirac delta function introduced by P. A. M. Dirac in 1930 to develop his theory of quantum mechanics has been well studied, a not famous formula related to the delta function using the Heaviside step function in a single-variable form, also given by Dirac, has been poorly studied. Following Dirac’s method, we demonstrate the decomposition of a multivariate function into a sum of integrals in which each integrand is composed of a derivative of the function and a direct product of Heaviside step functions. It is an extension of Dirac’s single-variable form to that for multiple variables. |
---|