Cargando…

Optimal entrainment of heterogeneous noisy neurons

We develop a methodology to design a stimulus optimized to entrain nonlinear, noisy limit cycle oscillators with uncertain properties. Conditions are derived which guarantee that the stimulus will entrain the oscillators despite these uncertainties. Using these conditions, we develop an energy optim...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Dan, Holt, Abbey B., Netoff, Theoden I., Moehlis, Jeff
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448041/
https://www.ncbi.nlm.nih.gov/pubmed/26074762
http://dx.doi.org/10.3389/fnins.2015.00192
_version_ 1782373645463584768
author Wilson, Dan
Holt, Abbey B.
Netoff, Theoden I.
Moehlis, Jeff
author_facet Wilson, Dan
Holt, Abbey B.
Netoff, Theoden I.
Moehlis, Jeff
author_sort Wilson, Dan
collection PubMed
description We develop a methodology to design a stimulus optimized to entrain nonlinear, noisy limit cycle oscillators with uncertain properties. Conditions are derived which guarantee that the stimulus will entrain the oscillators despite these uncertainties. Using these conditions, we develop an energy optimal control strategy to design an efficient entraining stimulus and apply it to numerical models of noisy phase oscillators and to in vitro hippocampal neurons. In both instances, the optimal stimuli outperform other similar but suboptimal entraining stimuli. Because this control strategy explicitly accounts for both noise and inherent uncertainty of model parameters, it could have experimental relevance to neural circuits where robust spike timing plays an important role.
format Online
Article
Text
id pubmed-4448041
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-44480412015-06-12 Optimal entrainment of heterogeneous noisy neurons Wilson, Dan Holt, Abbey B. Netoff, Theoden I. Moehlis, Jeff Front Neurosci Neuroscience We develop a methodology to design a stimulus optimized to entrain nonlinear, noisy limit cycle oscillators with uncertain properties. Conditions are derived which guarantee that the stimulus will entrain the oscillators despite these uncertainties. Using these conditions, we develop an energy optimal control strategy to design an efficient entraining stimulus and apply it to numerical models of noisy phase oscillators and to in vitro hippocampal neurons. In both instances, the optimal stimuli outperform other similar but suboptimal entraining stimuli. Because this control strategy explicitly accounts for both noise and inherent uncertainty of model parameters, it could have experimental relevance to neural circuits where robust spike timing plays an important role. Frontiers Media S.A. 2015-05-29 /pmc/articles/PMC4448041/ /pubmed/26074762 http://dx.doi.org/10.3389/fnins.2015.00192 Text en Copyright © 2015 Wilson, Holt, Netoff and Moehlis. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Wilson, Dan
Holt, Abbey B.
Netoff, Theoden I.
Moehlis, Jeff
Optimal entrainment of heterogeneous noisy neurons
title Optimal entrainment of heterogeneous noisy neurons
title_full Optimal entrainment of heterogeneous noisy neurons
title_fullStr Optimal entrainment of heterogeneous noisy neurons
title_full_unstemmed Optimal entrainment of heterogeneous noisy neurons
title_short Optimal entrainment of heterogeneous noisy neurons
title_sort optimal entrainment of heterogeneous noisy neurons
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448041/
https://www.ncbi.nlm.nih.gov/pubmed/26074762
http://dx.doi.org/10.3389/fnins.2015.00192
work_keys_str_mv AT wilsondan optimalentrainmentofheterogeneousnoisyneurons
AT holtabbeyb optimalentrainmentofheterogeneousnoisyneurons
AT netofftheodeni optimalentrainmentofheterogeneousnoisyneurons
AT moehlisjeff optimalentrainmentofheterogeneousnoisyneurons