Cargando…
Multidimensional stationary probability distribution for interacting active particles
We derive the stationary probability distribution for a non-equilibrium system composed by an arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative potential. This is based on a multidimensional version of the Unified Colored Noise Approximation. By com...
Autores principales: | Maggi, Claudio, Marconi, Umberto Marini Bettolo, Gnan, Nicoletta, Di Leonardo, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448265/ https://www.ncbi.nlm.nih.gov/pubmed/26021260 http://dx.doi.org/10.1038/srep10742 |
Ejemplares similares
-
Velocity distribution in active particles systems
por: Marconi, Umberto Marini Bettolo, et al.
Publicado: (2016) -
Corrigendum: Velocity distribution in active particles systems
por: Marconi, Umberto Marini Bettolo, et al.
Publicado: (2016) -
Heat, temperature and Clausius inequality in a model for active Brownian particles
por: Marconi, Umberto Marini Bettolo, et al.
Publicado: (2017) -
Erratum: Heat, temperature and Clausius inequality in a model for active Brownian particles
por: Marconi, Umberto Marini Bettolo, et al.
Publicado: (2018) -
Activity induced delocalization and freezing in self-propelled systems
por: Caprini, Lorenzo, et al.
Publicado: (2019)