Cargando…
Chromosome interaction over a distance in meiosis
The challenge of cell division is to distribute partner chromosomes (pairs of homologues, pairs of sex chromosomes or pairs of sister chromatids) correctly, one into each daughter cell. In the ‘standard’ meiosis, this problem is solved by linking partners together via a chiasma and/or sister chromat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448806/ https://www.ncbi.nlm.nih.gov/pubmed/26064610 http://dx.doi.org/10.1098/rsos.150029 |
Sumario: | The challenge of cell division is to distribute partner chromosomes (pairs of homologues, pairs of sex chromosomes or pairs of sister chromatids) correctly, one into each daughter cell. In the ‘standard’ meiosis, this problem is solved by linking partners together via a chiasma and/or sister chromatid cohesion, and then separating the linked partners from one another in anaphase; thus, the partners are kept track of, and correctly distributed. Many organisms, however, properly separate chromosomes in the absence of any obvious physical connection, and movements of unconnected partner chromosomes are coordinated at a distance. Meiotic distance interactions happen in many different ways and in different types of organisms. In this review, we discuss several different known types of distance segregation and propose possible explanations for non-random segregation of distance-segregating chromosomes. |
---|