Cargando…

Can differential nutrient extraction explain property variations in a predatory trap?

Predators exhibit flexible foraging to facilitate taking prey that offer important nutrients. Because trap-building predators have limited control over the prey they encounter, differential nutrient extraction and trap architectural flexibility may be used as a means of prey selection. Here, we test...

Descripción completa

Detalles Bibliográficos
Autores principales: Blamires, Sean J., Piorkowski, Dakota, Chuang, Angela, Tseng, Yi-Hsuan, Toft, Søren, Tso, I-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448829/
https://www.ncbi.nlm.nih.gov/pubmed/26064618
http://dx.doi.org/10.1098/rsos.140479
Descripción
Sumario:Predators exhibit flexible foraging to facilitate taking prey that offer important nutrients. Because trap-building predators have limited control over the prey they encounter, differential nutrient extraction and trap architectural flexibility may be used as a means of prey selection. Here, we tested whether differential nutrient extraction induces flexibility in architecture and stickiness of a spider's web by feeding Nephila pilipes live crickets (CC), live flies (FF), dead crickets with the web stimulated by flies (CD) or dead flies with the web stimulated by crickets (FD). Spiders in the CD group consumed less protein per mass of lipid or carbohydrate, and spiders in the FF group consumed less carbohydrates per mass of protein. Spiders from the CD group built stickier webs that used less silk, whereas spiders in the FF group built webs with more radii, greater catching areas and more silk, compared with other treatments. Our results suggest that differential nutrient extraction is a likely explanation for prey-induced spider web architecture and stickiness variations.