Cargando…
A Spectral Graph Regression Model for Learning Brain Connectivity of Alzheimer’s Disease
Understanding network features of brain pathology is essential to reveal underpinnings of neurodegenerative diseases. In this paper, we introduce a novel graph regression model (GRM) for learning structural brain connectivity of Alzheimer's disease (AD) measured by amyloid-β deposits. The propo...
Autores principales: | Hu, Chenhui, Cheng, Lin, Sepulcre, Jorge, Johnson, Keith A., Fakhri, Georges E., Lu, Yue M., Li, Quanzheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449104/ https://www.ncbi.nlm.nih.gov/pubmed/26024224 http://dx.doi.org/10.1371/journal.pone.0128136 |
Ejemplares similares
-
Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease
por: Yang, Jiarui, et al.
Publicado: (2017) -
Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution
por: You, Peiting, et al.
Publicado: (2022) -
Attenuation Correction Using Deep Learning and Integrated UTE/Multi-Echo Dixon Sequence: Evaluation in Amyloid and Tau PET Imaging
por: Gong, Kuang, et al.
Publicado: (2020) -
Spectral graph theory of brain oscillations
por: Raj, Ashish, et al.
Publicado: (2020) -
Neurogenetic profiles delineate large-scale connectivity dynamics of the human brain
por: Diez, Ibai, et al.
Publicado: (2018)