Cargando…
Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula
BACKGROUND: A population of humpback whales (Megaptera novaeangliae) spends the austral summer feeding on Antarctic krill (Euphausia superba) along the Western Antarctic Peninsula (WAP). These whales acquire their annual energetic needs during an episodic feeding season in high latitude waters that...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450492/ https://www.ncbi.nlm.nih.gov/pubmed/26034604 http://dx.doi.org/10.1186/s40462-015-0041-x |
_version_ | 1782374008456478720 |
---|---|
author | Curtice, Corrie Johnston, David W Ducklow, Hugh Gales, Nick Halpin, Patrick N Friedlaender, Ari S |
author_facet | Curtice, Corrie Johnston, David W Ducklow, Hugh Gales, Nick Halpin, Patrick N Friedlaender, Ari S |
author_sort | Curtice, Corrie |
collection | PubMed |
description | BACKGROUND: A population of humpback whales (Megaptera novaeangliae) spends the austral summer feeding on Antarctic krill (Euphausia superba) along the Western Antarctic Peninsula (WAP). These whales acquire their annual energetic needs during an episodic feeding season in high latitude waters that must sustain long-distance migration and fasting on low-latitude breeding grounds. Antarctic krill are broadly distributed along the continental shelf and nearshore waters during the spring and early summer, and move closer to land during late summer and fall, where they overwinter under the protective and nutritional cover of sea ice. We apply a novel space-time utilization distribution method to test the hypothesis that humpback whale distribution reflects that of krill: spread broadly during summer with increasing proximity to shore and associated embayments during fall. RESULTS: Humpback whales instrumented with satellite-linked positional telemetry tags (n = 5), show decreased home range size, amount of area used, and increased proximity to shore over the foraging season. CONCLUSIONS: This study applies a new method to model the movements of humpback whales in the WAP region throughout the feeding season, and presents a baseline for future observations of the seasonal changes in the movement patterns and foraging behavior of humpback whales (one of several krill-predators affected by climate-driven changes) in the WAP marine ecosystem. As the WAP continues to warm, it is prudent to understand the ecological relationships between sea-ice dependent krill and krill predators, as well as the interactions among recovering populations of krill predators that may be forced into competition for a shared food resource. |
format | Online Article Text |
id | pubmed-4450492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-44504922015-06-02 Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula Curtice, Corrie Johnston, David W Ducklow, Hugh Gales, Nick Halpin, Patrick N Friedlaender, Ari S Mov Ecol Research BACKGROUND: A population of humpback whales (Megaptera novaeangliae) spends the austral summer feeding on Antarctic krill (Euphausia superba) along the Western Antarctic Peninsula (WAP). These whales acquire their annual energetic needs during an episodic feeding season in high latitude waters that must sustain long-distance migration and fasting on low-latitude breeding grounds. Antarctic krill are broadly distributed along the continental shelf and nearshore waters during the spring and early summer, and move closer to land during late summer and fall, where they overwinter under the protective and nutritional cover of sea ice. We apply a novel space-time utilization distribution method to test the hypothesis that humpback whale distribution reflects that of krill: spread broadly during summer with increasing proximity to shore and associated embayments during fall. RESULTS: Humpback whales instrumented with satellite-linked positional telemetry tags (n = 5), show decreased home range size, amount of area used, and increased proximity to shore over the foraging season. CONCLUSIONS: This study applies a new method to model the movements of humpback whales in the WAP region throughout the feeding season, and presents a baseline for future observations of the seasonal changes in the movement patterns and foraging behavior of humpback whales (one of several krill-predators affected by climate-driven changes) in the WAP marine ecosystem. As the WAP continues to warm, it is prudent to understand the ecological relationships between sea-ice dependent krill and krill predators, as well as the interactions among recovering populations of krill predators that may be forced into competition for a shared food resource. BioMed Central 2015-06-01 /pmc/articles/PMC4450492/ /pubmed/26034604 http://dx.doi.org/10.1186/s40462-015-0041-x Text en © Curtice et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Curtice, Corrie Johnston, David W Ducklow, Hugh Gales, Nick Halpin, Patrick N Friedlaender, Ari S Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula |
title | Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula |
title_full | Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula |
title_fullStr | Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula |
title_full_unstemmed | Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula |
title_short | Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula |
title_sort | modeling the spatial and temporal dynamics of foraging movements of humpback whales (megaptera novaeangliae) in the western antarctic peninsula |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450492/ https://www.ncbi.nlm.nih.gov/pubmed/26034604 http://dx.doi.org/10.1186/s40462-015-0041-x |
work_keys_str_mv | AT curticecorrie modelingthespatialandtemporaldynamicsofforagingmovementsofhumpbackwhalesmegapteranovaeangliaeinthewesternantarcticpeninsula AT johnstondavidw modelingthespatialandtemporaldynamicsofforagingmovementsofhumpbackwhalesmegapteranovaeangliaeinthewesternantarcticpeninsula AT ducklowhugh modelingthespatialandtemporaldynamicsofforagingmovementsofhumpbackwhalesmegapteranovaeangliaeinthewesternantarcticpeninsula AT galesnick modelingthespatialandtemporaldynamicsofforagingmovementsofhumpbackwhalesmegapteranovaeangliaeinthewesternantarcticpeninsula AT halpinpatrickn modelingthespatialandtemporaldynamicsofforagingmovementsofhumpbackwhalesmegapteranovaeangliaeinthewesternantarcticpeninsula AT friedlaenderaris modelingthespatialandtemporaldynamicsofforagingmovementsofhumpbackwhalesmegapteranovaeangliaeinthewesternantarcticpeninsula |