Cargando…
Temperature changes caused by light curing of fiber-reinforced composite resins
OBJECTIVE: The aim of the study is to evaluate temperature change in fiber-reinforced composite (FRC) resin photopolymerized with a light-emitting diode (LED) light-curing unit (LCU). MATERIALS AND METHODS: Forty dentine disks (1 mm thick and 8 mm diameter) were prepared from human molars. The FRC s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450529/ https://www.ncbi.nlm.nih.gov/pubmed/26069409 http://dx.doi.org/10.4103/0972-0707.157258 |
_version_ | 1782374016969867264 |
---|---|
author | Ilday, Nurcan Ozakar Sagsoz, Omer Karatas, Ozcan Bayindir, Yusuf Ziya Çelik, Neslihan |
author_facet | Ilday, Nurcan Ozakar Sagsoz, Omer Karatas, Ozcan Bayindir, Yusuf Ziya Çelik, Neslihan |
author_sort | Ilday, Nurcan Ozakar |
collection | PubMed |
description | OBJECTIVE: The aim of the study is to evaluate temperature change in fiber-reinforced composite (FRC) resin photopolymerized with a light-emitting diode (LED) light-curing unit (LCU). MATERIALS AND METHODS: Forty dentine disks (1 mm thick and 8 mm diameter) were prepared from human molars. The FRC specimens (2 mm thickness and 8 mm diameter) consisted of polyethylene fiber (Construct (CT)) products or glass fiber (ever Stick (ES)) and one hybrid composite bonded to the dentin disks and polymerized with an LED LCU. Control groups were prepared using the hybrid composite. Temperature rise in dentine samples under the FRC bonded disks was measured using a K-type thermocouple, and data were recorded. Temperature change data were subjected to analysis of variance (ANOVA) and Duncan's test. RESULTS: The results show that addition of fiber (one or two layers) did not change temperature rise values at any of the exposure times (P > 0.05). The CT fiber/two layer/40 s group exhibited the greatest temperature rise (5.49 ± 0.62) and the ES/one layer/10 s group the lowest rise (1.75 ± 0.32). A significant difference was observed in temperature rise measured during 10 and 20 s exposures (P < 0.05). CONCLUSION: Maximal temperature rise determined in all groups was not critical for pulpal health, although clinicians need to note temperature rises during polymerization. |
format | Online Article Text |
id | pubmed-4450529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-44505292015-06-11 Temperature changes caused by light curing of fiber-reinforced composite resins Ilday, Nurcan Ozakar Sagsoz, Omer Karatas, Ozcan Bayindir, Yusuf Ziya Çelik, Neslihan J Conserv Dent Original Article OBJECTIVE: The aim of the study is to evaluate temperature change in fiber-reinforced composite (FRC) resin photopolymerized with a light-emitting diode (LED) light-curing unit (LCU). MATERIALS AND METHODS: Forty dentine disks (1 mm thick and 8 mm diameter) were prepared from human molars. The FRC specimens (2 mm thickness and 8 mm diameter) consisted of polyethylene fiber (Construct (CT)) products or glass fiber (ever Stick (ES)) and one hybrid composite bonded to the dentin disks and polymerized with an LED LCU. Control groups were prepared using the hybrid composite. Temperature rise in dentine samples under the FRC bonded disks was measured using a K-type thermocouple, and data were recorded. Temperature change data were subjected to analysis of variance (ANOVA) and Duncan's test. RESULTS: The results show that addition of fiber (one or two layers) did not change temperature rise values at any of the exposure times (P > 0.05). The CT fiber/two layer/40 s group exhibited the greatest temperature rise (5.49 ± 0.62) and the ES/one layer/10 s group the lowest rise (1.75 ± 0.32). A significant difference was observed in temperature rise measured during 10 and 20 s exposures (P < 0.05). CONCLUSION: Maximal temperature rise determined in all groups was not critical for pulpal health, although clinicians need to note temperature rises during polymerization. Medknow Publications & Media Pvt Ltd 2015 /pmc/articles/PMC4450529/ /pubmed/26069409 http://dx.doi.org/10.4103/0972-0707.157258 Text en Copyright: © Journal of Conservative Dentistry http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Ilday, Nurcan Ozakar Sagsoz, Omer Karatas, Ozcan Bayindir, Yusuf Ziya Çelik, Neslihan Temperature changes caused by light curing of fiber-reinforced composite resins |
title | Temperature changes caused by light curing of fiber-reinforced composite resins |
title_full | Temperature changes caused by light curing of fiber-reinforced composite resins |
title_fullStr | Temperature changes caused by light curing of fiber-reinforced composite resins |
title_full_unstemmed | Temperature changes caused by light curing of fiber-reinforced composite resins |
title_short | Temperature changes caused by light curing of fiber-reinforced composite resins |
title_sort | temperature changes caused by light curing of fiber-reinforced composite resins |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450529/ https://www.ncbi.nlm.nih.gov/pubmed/26069409 http://dx.doi.org/10.4103/0972-0707.157258 |
work_keys_str_mv | AT ildaynurcanozakar temperaturechangescausedbylightcuringoffiberreinforcedcompositeresins AT sagsozomer temperaturechangescausedbylightcuringoffiberreinforcedcompositeresins AT karatasozcan temperaturechangescausedbylightcuringoffiberreinforcedcompositeresins AT bayindiryusufziya temperaturechangescausedbylightcuringoffiberreinforcedcompositeresins AT celikneslihan temperaturechangescausedbylightcuringoffiberreinforcedcompositeresins |