Cargando…
Concept selection for phenotypes and diseases using learn to rank
BACKGROUND: Phenotypes form the basis for determining the existence of a disease against the given evidence. Much of this evidence though remains locked away in text – scientific articles, clinical trial reports and electronic patient records (EPR) – where authors use the full expressivity of human...
Autores principales: | Collier, Nigel, Oellrich, Anika, Groza, Tudor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450611/ https://www.ncbi.nlm.nih.gov/pubmed/26034558 http://dx.doi.org/10.1186/s13326-015-0019-z |
Ejemplares similares
-
Generation of Silver Standard Concept Annotations from Biomedical Texts with Special Relevance to Phenotypes
por: Oellrich, Anika, et al.
Publicado: (2015) -
Toward knowledge support for analysis and interpretation of complex traits
por: Collier, Nigel, et al.
Publicado: (2013) -
PhenoMiner: from text to a database of phenotypes associated with OMIM diseases
por: Collier, Nigel, et al.
Publicado: (2015) -
Learning to Recognize Phenotype Candidates in the Auto-Immune Literature Using SVM Re-Ranking
por: Collier, Nigel, et al.
Publicado: (2013) -
Automatic concept recognition using the Human Phenotype Ontology reference and test suite corpora
por: Groza, Tudor, et al.
Publicado: (2015)