Cargando…
Automated Detection of Leakage in Fluorescein Angiography Images with Application to Malarial Retinopathy
The detection and assessment of leakage in retinal fluorescein angiogram images is important for the management of a wide range of retinal diseases. We have developed a framework that can automatically detect three types of leakage (large focal, punctate focal, and vessel segment leakage) and valida...
Autores principales: | Zhao, Yitian, J. C. MacCormick, Ian, G. Parry, David, Leach, Sophie, A. V. Beare, Nicholas, P. Harding, Simon, Zheng, Yalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450752/ https://www.ncbi.nlm.nih.gov/pubmed/26030010 http://dx.doi.org/10.1038/srep10425 |
Ejemplares similares
-
Automated Detection of Vessel Abnormalities on Fluorescein Angiogram in Malarial Retinopathy
por: Zhao, Yitian, et al.
Publicado: (2015) -
Grading fluorescein angiograms in malarial retinopathy
por: MacCormick, Ian J. C., et al.
Publicado: (2015) -
Malarial retinopathy affecting visual function in a Malawian adult with cerebral malaria
por: Piddock, Katherine, et al.
Publicado: (2014) -
A Comprehensive Texture Segmentation Framework for Segmentation of Capillary Non-Perfusion Regions in Fundus Fluorescein Angiograms
por: Zheng, Yalin, et al.
Publicado: (2014) -
Deep learning for automated detection of neovascular leakage on ultra-widefield fluorescein angiography in diabetic retinopathy
por: Zhao, Peter Y., et al.
Publicado: (2023)