Cargando…
Multi-Input Distributed Classifiers for Synthetic Genetic Circuits
For practical construction of complex synthetic genetic networks able to perform elaborate functions it is important to have a pool of relatively simple modules with different functionality which can be compounded together. To complement engineering of very different existing synthetic genetic devic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450813/ https://www.ncbi.nlm.nih.gov/pubmed/25946237 http://dx.doi.org/10.1371/journal.pone.0125144 |
_version_ | 1782374056011497472 |
---|---|
author | Kanakov, Oleg Kotelnikov, Roman Alsaedi, Ahmed Tsimring, Lev Huerta, Ramón Zaikin, Alexey Ivanchenko, Mikhail |
author_facet | Kanakov, Oleg Kotelnikov, Roman Alsaedi, Ahmed Tsimring, Lev Huerta, Ramón Zaikin, Alexey Ivanchenko, Mikhail |
author_sort | Kanakov, Oleg |
collection | PubMed |
description | For practical construction of complex synthetic genetic networks able to perform elaborate functions it is important to have a pool of relatively simple modules with different functionality which can be compounded together. To complement engineering of very different existing synthetic genetic devices such as switches, oscillators or logical gates, we propose and develop here a design of synthetic multi-input classifier based on a recently introduced distributed classifier concept. A heterogeneous population of cells acts as a single classifier, whose output is obtained by summarizing the outputs of individual cells. The learning ability is achieved by pruning the population, instead of tuning parameters of an individual cell. The present paper is focused on evaluating two possible schemes of multi-input gene classifier circuits. We demonstrate their suitability for implementing a multi-input distributed classifier capable of separating data which are inseparable for single-input classifiers, and characterize performance of the classifiers by analytical and numerical results. The simpler scheme implements a linear classifier in a single cell and is targeted at separable classification problems with simple class borders. A hard learning strategy is used to train a distributed classifier by removing from the population any cell answering incorrectly to at least one training example. The other scheme implements a circuit with a bell-shaped response in a single cell to allow potentially arbitrary shape of the classification border in the input space of a distributed classifier. Inseparable classification problems are addressed using soft learning strategy, characterized by probabilistic decision to keep or discard a cell at each training iteration. We expect that our classifier design contributes to the development of robust and predictable synthetic biosensors, which have the potential to affect applications in a lot of fields, including that of medicine and industry. |
format | Online Article Text |
id | pubmed-4450813 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44508132015-06-09 Multi-Input Distributed Classifiers for Synthetic Genetic Circuits Kanakov, Oleg Kotelnikov, Roman Alsaedi, Ahmed Tsimring, Lev Huerta, Ramón Zaikin, Alexey Ivanchenko, Mikhail PLoS One Research Article For practical construction of complex synthetic genetic networks able to perform elaborate functions it is important to have a pool of relatively simple modules with different functionality which can be compounded together. To complement engineering of very different existing synthetic genetic devices such as switches, oscillators or logical gates, we propose and develop here a design of synthetic multi-input classifier based on a recently introduced distributed classifier concept. A heterogeneous population of cells acts as a single classifier, whose output is obtained by summarizing the outputs of individual cells. The learning ability is achieved by pruning the population, instead of tuning parameters of an individual cell. The present paper is focused on evaluating two possible schemes of multi-input gene classifier circuits. We demonstrate their suitability for implementing a multi-input distributed classifier capable of separating data which are inseparable for single-input classifiers, and characterize performance of the classifiers by analytical and numerical results. The simpler scheme implements a linear classifier in a single cell and is targeted at separable classification problems with simple class borders. A hard learning strategy is used to train a distributed classifier by removing from the population any cell answering incorrectly to at least one training example. The other scheme implements a circuit with a bell-shaped response in a single cell to allow potentially arbitrary shape of the classification border in the input space of a distributed classifier. Inseparable classification problems are addressed using soft learning strategy, characterized by probabilistic decision to keep or discard a cell at each training iteration. We expect that our classifier design contributes to the development of robust and predictable synthetic biosensors, which have the potential to affect applications in a lot of fields, including that of medicine and industry. Public Library of Science 2015-05-06 /pmc/articles/PMC4450813/ /pubmed/25946237 http://dx.doi.org/10.1371/journal.pone.0125144 Text en © 2015 Kanakov et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kanakov, Oleg Kotelnikov, Roman Alsaedi, Ahmed Tsimring, Lev Huerta, Ramón Zaikin, Alexey Ivanchenko, Mikhail Multi-Input Distributed Classifiers for Synthetic Genetic Circuits |
title | Multi-Input Distributed Classifiers for Synthetic Genetic Circuits |
title_full | Multi-Input Distributed Classifiers for Synthetic Genetic Circuits |
title_fullStr | Multi-Input Distributed Classifiers for Synthetic Genetic Circuits |
title_full_unstemmed | Multi-Input Distributed Classifiers for Synthetic Genetic Circuits |
title_short | Multi-Input Distributed Classifiers for Synthetic Genetic Circuits |
title_sort | multi-input distributed classifiers for synthetic genetic circuits |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450813/ https://www.ncbi.nlm.nih.gov/pubmed/25946237 http://dx.doi.org/10.1371/journal.pone.0125144 |
work_keys_str_mv | AT kanakovoleg multiinputdistributedclassifiersforsyntheticgeneticcircuits AT kotelnikovroman multiinputdistributedclassifiersforsyntheticgeneticcircuits AT alsaediahmed multiinputdistributedclassifiersforsyntheticgeneticcircuits AT tsimringlev multiinputdistributedclassifiersforsyntheticgeneticcircuits AT huertaramon multiinputdistributedclassifiersforsyntheticgeneticcircuits AT zaikinalexey multiinputdistributedclassifiersforsyntheticgeneticcircuits AT ivanchenkomikhail multiinputdistributedclassifiersforsyntheticgeneticcircuits |