Cargando…
CT Image Reconstruction from Sparse Projections Using Adaptive TpV Regularization
Radiation dose reduction without losing CT image quality has been an increasing concern. Reducing the number of X-ray projections to reconstruct CT images, which is also called sparse-projection reconstruction, can potentially avoid excessive dose delivered to patients in CT examination. To overcome...
Autores principales: | Qi, Hongliang, Chen, Zijia, Zhou, Linghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450881/ https://www.ncbi.nlm.nih.gov/pubmed/26089962 http://dx.doi.org/10.1155/2015/354869 |
Ejemplares similares
-
Iterative Image Reconstruction for Limited-Angle CT Using Optimized Initial Image
por: Guo, Jingyu, et al.
Publicado: (2016) -
Accurate Sparse-Projection Image Reconstruction via Nonlocal TV Regularization
por: Zhang, Yi, et al.
Publicado: (2014) -
TPV Foaming by CO(2) Extrusion: Processing and Modelling
por: Rainglet, Benoit, et al.
Publicado: (2022) -
Smoothed l
(0) Norm Regularization for Sparse-View X-Ray CT Reconstruction
por: Li, Ming, et al.
Publicado: (2016) -
Sparseness and Smoothness Regularized Imaging for improving the resolution of Cryo-EM single-particle reconstruction
por: Luo, Zhenwei, et al.
Publicado: (2021)