Cargando…
Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images
BACKGROUND: Recent techniques for tagging and visualizing single molecules in fixed or living organisms and cell lines have been revolutionizing our understanding of the spatial and temporal dynamics of fundamental biological processes. However, fluorescence microscopy images are often noisy, and it...
Autores principales: | Wu, Allison Chia-Yi, Rifkin, Scott A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450985/ https://www.ncbi.nlm.nih.gov/pubmed/25880543 http://dx.doi.org/10.1186/s12859-015-0534-z |
Ejemplares similares
-
Erratum to: ‘Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images’
por: Wu, Allison Chia-Yi, et al.
Publicado: (2016) -
Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification
por: Borgmann, Daniela M., et al.
Publicado: (2016) -
CARE 2.0: reducing false-positive sequencing error corrections using machine learning
por: Kallenborn, Felix, et al.
Publicado: (2022) -
FiloDetect: automatic detection of filopodia from fluorescence microscopy images
por: Nilufar, Sharmin, et al.
Publicado: (2013) -
SAMQA: error classification and validation of high-throughput sequenced read data
por: Robinson, Thomas, et al.
Publicado: (2011)