Cargando…

Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output

Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiemann, Julia, Puggioni, Paolo, Dacre, Joshua, Pelko, Miha, Domanski, Aleksander, van Rossum, Mark C.W., Duguid, Ian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451462/
https://www.ncbi.nlm.nih.gov/pubmed/25981037
http://dx.doi.org/10.1016/j.celrep.2015.04.042
_version_ 1782374136295718912
author Schiemann, Julia
Puggioni, Paolo
Dacre, Joshua
Pelko, Miha
Domanski, Aleksander
van Rossum, Mark C.W.
Duguid, Ian
author_facet Schiemann, Julia
Puggioni, Paolo
Dacre, Joshua
Pelko, Miha
Domanski, Aleksander
van Rossum, Mark C.W.
Duguid, Ian
author_sort Schiemann, Julia
collection PubMed
description Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed) firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1) a global decrease in membrane potential variability that reduced L5B firing rates (L5B(suppressed) neurons), and (2) a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5B(enhanced) neurons) that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.
format Online
Article
Text
id pubmed-4451462
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-44514622015-06-03 Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output Schiemann, Julia Puggioni, Paolo Dacre, Joshua Pelko, Miha Domanski, Aleksander van Rossum, Mark C.W. Duguid, Ian Cell Rep Article Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed) firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1) a global decrease in membrane potential variability that reduced L5B firing rates (L5B(suppressed) neurons), and (2) a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5B(enhanced) neurons) that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior. Cell Press 2015-05-14 /pmc/articles/PMC4451462/ /pubmed/25981037 http://dx.doi.org/10.1016/j.celrep.2015.04.042 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schiemann, Julia
Puggioni, Paolo
Dacre, Joshua
Pelko, Miha
Domanski, Aleksander
van Rossum, Mark C.W.
Duguid, Ian
Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output
title Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output
title_full Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output
title_fullStr Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output
title_full_unstemmed Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output
title_short Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output
title_sort cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451462/
https://www.ncbi.nlm.nih.gov/pubmed/25981037
http://dx.doi.org/10.1016/j.celrep.2015.04.042
work_keys_str_mv AT schiemannjulia cellularmechanismsunderlyingbehavioralstatedependentbidirectionalmodulationofmotorcortexoutput
AT puggionipaolo cellularmechanismsunderlyingbehavioralstatedependentbidirectionalmodulationofmotorcortexoutput
AT dacrejoshua cellularmechanismsunderlyingbehavioralstatedependentbidirectionalmodulationofmotorcortexoutput
AT pelkomiha cellularmechanismsunderlyingbehavioralstatedependentbidirectionalmodulationofmotorcortexoutput
AT domanskialeksander cellularmechanismsunderlyingbehavioralstatedependentbidirectionalmodulationofmotorcortexoutput
AT vanrossummarkcw cellularmechanismsunderlyingbehavioralstatedependentbidirectionalmodulationofmotorcortexoutput
AT duguidian cellularmechanismsunderlyingbehavioralstatedependentbidirectionalmodulationofmotorcortexoutput