Cargando…
Spatial learning by mice in three dimensions
We tested whether mice can represent locations distributed throughout three-dimensional space, by developing a novel three-dimensional radial arm maze. The three-dimensional radial maze, or “radiolarian” maze, consists of a central spherical core from which arms project in all directions. Mice learn...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451476/ https://www.ncbi.nlm.nih.gov/pubmed/25930216 http://dx.doi.org/10.1016/j.bbr.2015.04.035 |
Sumario: | We tested whether mice can represent locations distributed throughout three-dimensional space, by developing a novel three-dimensional radial arm maze. The three-dimensional radial maze, or “radiolarian” maze, consists of a central spherical core from which arms project in all directions. Mice learn to retrieve food from the ends of the arms without omitting any arms or re-visiting depleted ones. We show here that mice can learn both a standard working memory task, in which all arms are initially baited, and also a reference memory version in which only a subset are ever baited. Comparison with a two-dimensional analogue of the radiolarian maze, the hexagon maze, revealed equally good working-memory performance in both mazes if all the arms were initially baited, but reduced working and reference memory in the partially baited radiolarian maze. This suggests intact three-dimensional spatial representation in mice over short timescales but impairment of the formation and/or use of long-term spatial memory of the maze. We discuss potential mechanisms for how mice solve the three-dimensional task, and reasons for the impairment relative to its two-dimensional counterpart, concluding with some speculations about how mammals may represent three-dimensional space. |
---|