Cargando…

Characterization of plants expressing the human β1,4-galactosyltrasferase gene

Modification of the plant N-glycosylation pathway towards human type structures is an important strategy to implement plants as expression systems for therapeutic proteins. Nevertheless, relatively little is known about the overall impact of non-plant glycosylation enzymes in stable transformed plan...

Descripción completa

Detalles Bibliográficos
Autores principales: Schneider, Jeannine, Castilho, Alexandra, Pabst, Martin, Altmann, Friedrich, Gruber, Clemens, Strasser, Richard, Gattinger, Pia, Seifert, Georg J., Steinkellner, Herta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451504/
https://www.ncbi.nlm.nih.gov/pubmed/25900423
http://dx.doi.org/10.1016/j.plaphy.2015.04.010
Descripción
Sumario:Modification of the plant N-glycosylation pathway towards human type structures is an important strategy to implement plants as expression systems for therapeutic proteins. Nevertheless, relatively little is known about the overall impact of non-plant glycosylation enzymes in stable transformed plants. Here, we analyzed transgenic lines (Nicotiana benthamiana and Arabidopsis thaliana) that stably express a modified version of human β1,4-galactosyltransferase ((ST)GalT). While some transgenic plants grew normally, other lines exhibited a severe phenotype associated with stunted growth and developmental retardation. The severity of the phenotype correlated with both increased (ST)GalT mRNA and protein levels but no differences were observed between N-glycosylation profiles of plants with and without the phenotype. In contrast to non-transgenic plants, all (ST)GalT expressing plants synthesized significant amounts of incompletely processed (largely depleted of core fucose) N-glycans with up to 40% terminally galactosylated structures. While transgenic plants showed no differences in nucleotide sugar composition and cell wall monosaccharide content, alterations in the reactivity of cell wall carbohydrate epitopes associated with arabinogalactan-proteins and pectic homogalacturonan were detected in (ST)GalT expressing plants. Notably, plants with phenotypic alterations showed increased levels of hydrogen peroxide, most probably a consequence of hypersensitive reactions. Our data demonstrate that unfavorable phenotypical modifications may occur upon stable in planta expression of non-native glycosyltransferases. Such important issues need to be taken into consideration in respect to stable glycan engineering in plants.