Cargando…
Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy
BACKGROUND: Manual and semi-automatic analyses of images, acquired in vivo by confocal microscopy, are often used to determine the quality of corneal endothelium in the human eye. These procedures are highly time consuming. Here, we present two fully automatic methods to analyze and quantify corneal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451752/ https://www.ncbi.nlm.nih.gov/pubmed/25928199 http://dx.doi.org/10.1186/s12880-015-0054-3 |
_version_ | 1782374190836350976 |
---|---|
author | Selig, Bettina Vermeer, Koenraad A Rieger, Bernd Hillenaar, Toine Luengo Hendriks, Cris L |
author_facet | Selig, Bettina Vermeer, Koenraad A Rieger, Bernd Hillenaar, Toine Luengo Hendriks, Cris L |
author_sort | Selig, Bettina |
collection | PubMed |
description | BACKGROUND: Manual and semi-automatic analyses of images, acquired in vivo by confocal microscopy, are often used to determine the quality of corneal endothelium in the human eye. These procedures are highly time consuming. Here, we present two fully automatic methods to analyze and quantify corneal endothelium imaged by in vivo white light slit-scanning confocal microscopy. METHODS: In the first approach, endothelial cell density is estimated with the help of spatial frequency analysis. We evaluate published methods, and propose a new, parameter-free method. In the second approach, based on the stochastic watershed, cells are automatically segmented and the result is used to estimate cell density, polymegathism (cell size variability) and pleomorphism (cell shape variation). We show how to determine optimal values for the three parameters of this algorithm, and compare its results to a semi-automatic delineation by a trained observer. RESULTS: The frequency analysis method proposed here is more precise than any published method. The segmentation method outperforms the fully automatic method in the NAVIS software (Nidek Technologies Srl, Padova, Italy), which significantly overestimates the number of cells for cell densities below approximately 1200 mm(−2), as well as previously published methods. CONCLUSIONS: The methods presented here provide a significant improvement over the state of the art, and make in vivo, automated assessment of corneal endothelium more accessible. The segmentation method proposed paves the way to many possible new morphometric parameters, which can quickly and precisely be determined from the segmented image. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12880-015-0054-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4451752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-44517522015-06-03 Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy Selig, Bettina Vermeer, Koenraad A Rieger, Bernd Hillenaar, Toine Luengo Hendriks, Cris L BMC Med Imaging Technical Advance BACKGROUND: Manual and semi-automatic analyses of images, acquired in vivo by confocal microscopy, are often used to determine the quality of corneal endothelium in the human eye. These procedures are highly time consuming. Here, we present two fully automatic methods to analyze and quantify corneal endothelium imaged by in vivo white light slit-scanning confocal microscopy. METHODS: In the first approach, endothelial cell density is estimated with the help of spatial frequency analysis. We evaluate published methods, and propose a new, parameter-free method. In the second approach, based on the stochastic watershed, cells are automatically segmented and the result is used to estimate cell density, polymegathism (cell size variability) and pleomorphism (cell shape variation). We show how to determine optimal values for the three parameters of this algorithm, and compare its results to a semi-automatic delineation by a trained observer. RESULTS: The frequency analysis method proposed here is more precise than any published method. The segmentation method outperforms the fully automatic method in the NAVIS software (Nidek Technologies Srl, Padova, Italy), which significantly overestimates the number of cells for cell densities below approximately 1200 mm(−2), as well as previously published methods. CONCLUSIONS: The methods presented here provide a significant improvement over the state of the art, and make in vivo, automated assessment of corneal endothelium more accessible. The segmentation method proposed paves the way to many possible new morphometric parameters, which can quickly and precisely be determined from the segmented image. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12880-015-0054-3) contains supplementary material, which is available to authorized users. BioMed Central 2015-04-26 /pmc/articles/PMC4451752/ /pubmed/25928199 http://dx.doi.org/10.1186/s12880-015-0054-3 Text en © Selig et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Technical Advance Selig, Bettina Vermeer, Koenraad A Rieger, Bernd Hillenaar, Toine Luengo Hendriks, Cris L Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy |
title | Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy |
title_full | Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy |
title_fullStr | Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy |
title_full_unstemmed | Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy |
title_short | Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy |
title_sort | fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy |
topic | Technical Advance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451752/ https://www.ncbi.nlm.nih.gov/pubmed/25928199 http://dx.doi.org/10.1186/s12880-015-0054-3 |
work_keys_str_mv | AT seligbettina fullyautomaticevaluationofthecornealendotheliumfrominvivoconfocalmicroscopy AT vermeerkoenraada fullyautomaticevaluationofthecornealendotheliumfrominvivoconfocalmicroscopy AT riegerbernd fullyautomaticevaluationofthecornealendotheliumfrominvivoconfocalmicroscopy AT hillenaartoine fullyautomaticevaluationofthecornealendotheliumfrominvivoconfocalmicroscopy AT luengohendrikscrisl fullyautomaticevaluationofthecornealendotheliumfrominvivoconfocalmicroscopy |