Cargando…

Aptamer-labeled PLGA nanoparticles for targeting cancer cells

Cancer is one of the leading causes of death in most parts of the world and is a very serious cause of concern particularly in developing countries. In this work, we prepared and evaluated the aptamer-labeled paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Apt-PTX-PLGA NPs) whi...

Descripción completa

Detalles Bibliográficos
Autores principales: Aravind, Athulya, Varghese, Saino Hanna, Veeranarayanan, Srivani, Mathew, Anila, Nagaoka, Yutaka, Iwai, Seiki, Fukuda, Takahiro, Hasumura, Takashi, Yoshida, Yasuhiko, Maekawa, Toru, Kumar, D. Sakthi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4452037/
https://www.ncbi.nlm.nih.gov/pubmed/26069492
http://dx.doi.org/10.1007/s12645-011-0024-6
Descripción
Sumario:Cancer is one of the leading causes of death in most parts of the world and is a very serious cause of concern particularly in developing countries. In this work, we prepared and evaluated the aptamer-labeled paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Apt-PTX-PLGA NPs) which can ameliorate drug bioavailability and enable accurate drug targeting to cancer cells with controlled drug release for cancer therapy. Paclitaxel-loaded PLGA nanoparticles (PTX-PLGA NPs) were formulated by a single-emulsion/solvent evaporation method and were further surface-functionalized with a chemical cross-linker bis(sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. The prepared nanoparticles were characterized by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cytotoxicity studies were carried out using normal human mammary epithelial cells (HMEC cells) and human glial cancer cells (GI-1 cells) by methylthiazolyldiphenyl-tetrazolium bromide assay and Alamar blue assay, which confirmed that PTX-PLGA NPs with aptamer conjugation (Apt-PTX-PLGA NPs) were comparatively non-toxic to HMEC cells while toxic to GI-1 cancer cells. Cellular uptake of PTX-PLGA NPs with and without aptamer conjugation was studied using GI-1 cells and monitored by confocal microscopy and phase contrast microscopy. Our studies demonstrated significant internalization and retention of nanoparticles inside the cells, inducing apoptosis. The preferential accumulation of PTX-PLGA NPs within the cancer cells were also confirmed by flow cytometry-based uptake studies. The results indicated that Apt-PTX-PLGA NPs could be a promising targeted therapeutic delivery vehicle for cancer treatment.