Cargando…

Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Xiang-yu, Zhao, Yu, Liu, Ling-ling, Jia, Bo, Zhao, Fang, Huang, Wei-dong, Zhan, Ji-cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4452488/
https://www.ncbi.nlm.nih.gov/pubmed/26030864
http://dx.doi.org/10.1371/journal.pone.0128611
_version_ 1782374306540421120
author Sun, Xiang-yu
Zhao, Yu
Liu, Ling-ling
Jia, Bo
Zhao, Fang
Huang, Wei-dong
Zhan, Ji-cheng
author_facet Sun, Xiang-yu
Zhao, Yu
Liu, Ling-ling
Jia, Bo
Zhao, Fang
Huang, Wei-dong
Zhan, Ji-cheng
author_sort Sun, Xiang-yu
collection PubMed
description At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu(2+) were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu(2+) for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu(2+) concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.
format Online
Article
Text
id pubmed-4452488
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44524882015-06-09 Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation Sun, Xiang-yu Zhao, Yu Liu, Ling-ling Jia, Bo Zhao, Fang Huang, Wei-dong Zhan, Ji-cheng PLoS One Research Article At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu(2+) were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu(2+) for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu(2+) concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. Public Library of Science 2015-06-01 /pmc/articles/PMC4452488/ /pubmed/26030864 http://dx.doi.org/10.1371/journal.pone.0128611 Text en © 2015 Sun et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Sun, Xiang-yu
Zhao, Yu
Liu, Ling-ling
Jia, Bo
Zhao, Fang
Huang, Wei-dong
Zhan, Ji-cheng
Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation
title Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation
title_full Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation
title_fullStr Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation
title_full_unstemmed Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation
title_short Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation
title_sort copper tolerance and biosorption of saccharomyces cerevisiae during alcoholic fermentation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4452488/
https://www.ncbi.nlm.nih.gov/pubmed/26030864
http://dx.doi.org/10.1371/journal.pone.0128611
work_keys_str_mv AT sunxiangyu coppertoleranceandbiosorptionofsaccharomycescerevisiaeduringalcoholicfermentation
AT zhaoyu coppertoleranceandbiosorptionofsaccharomycescerevisiaeduringalcoholicfermentation
AT liulingling coppertoleranceandbiosorptionofsaccharomycescerevisiaeduringalcoholicfermentation
AT jiabo coppertoleranceandbiosorptionofsaccharomycescerevisiaeduringalcoholicfermentation
AT zhaofang coppertoleranceandbiosorptionofsaccharomycescerevisiaeduringalcoholicfermentation
AT huangweidong coppertoleranceandbiosorptionofsaccharomycescerevisiaeduringalcoholicfermentation
AT zhanjicheng coppertoleranceandbiosorptionofsaccharomycescerevisiaeduringalcoholicfermentation