Cargando…
Calculating mutual information for spike trains and other data with distances but no coordinates
Many important data types, such as the spike trains recorded from neurons in typical electrophysiological experiments, have a natural notion of distance or similarity between data points, even though there is no obvious coordinate system. Here, a simple Kozachenko–Leonenko estimator is derived for c...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453244/ https://www.ncbi.nlm.nih.gov/pubmed/26064650 http://dx.doi.org/10.1098/rsos.140391 |
Sumario: | Many important data types, such as the spike trains recorded from neurons in typical electrophysiological experiments, have a natural notion of distance or similarity between data points, even though there is no obvious coordinate system. Here, a simple Kozachenko–Leonenko estimator is derived for calculating the mutual information between datasets of this type. |
---|