Cargando…
CD38-mediated Ca(2+) signaling contributes to glucagon-induced hepatic gluconeogenesis
CD38 is a multifunctional enzyme for the synthesis of Ca(2+) second messengers. Glucagon promotes hepatic glucose production through Ca(2+) signaling in the fasting condition. In this study, we investigated the role of CD38 in the glucagon signaling of hepatocytes. Here, we show that glucagon induce...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454144/ https://www.ncbi.nlm.nih.gov/pubmed/26038839 http://dx.doi.org/10.1038/srep10741 |
Sumario: | CD38 is a multifunctional enzyme for the synthesis of Ca(2+) second messengers. Glucagon promotes hepatic glucose production through Ca(2+) signaling in the fasting condition. In this study, we investigated the role of CD38 in the glucagon signaling of hepatocytes. Here, we show that glucagon induces cyclic ADP-ribose (cADPR) production and sustained Ca(2+) increases via CD38 in hepatocytes. 8-Br-cADPR, an antagonistic cADPR analog, completely blocked glucagon-induced Ca(2+) increases and phosphorylation of cAMP response element-binding protein (CREB). Moreover, glucagon-induced sustained Ca(2+) signals and translocation of CREB-regulated transcription coactivator 2 to the nucleus were absent and glucagon-induced glucose production and expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pck1) are remarkably reduced in hepatocytes from CD38(−/−) mice. Furthermore, in the fasting condition, CD38(−/−) mice have decreased blood glucose and hepatic expression of G6Pase and Pck1 compared to wild type mice. Our data suggest that CD38/cADPR-mediated Ca(2+) signals play a key role in glucagon-induced gluconeogenesis in hepatocytes, and that the signal pathway has significant clinical implications in metabolic diseases, including type 2 diabetes. |
---|