Cargando…

Dynamic instability 30 years later: complexities in microtubule growth and catastrophe

Microtubules are not like other polymers. Whereas polymers such as F-actin will grow continuously as long as the subunit concentration is high enough, a steadily growing microtubule can suddenly shrink even when there is ample αβ-tubulin around. This remarkable behavior was discovered in 1984 when T...

Descripción completa

Detalles Bibliográficos
Autor principal: Brouhard, Gary J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454169/
https://www.ncbi.nlm.nih.gov/pubmed/25823928
http://dx.doi.org/10.1091/mbc.E13-10-0594
Descripción
Sumario:Microtubules are not like other polymers. Whereas polymers such as F-actin will grow continuously as long as the subunit concentration is high enough, a steadily growing microtubule can suddenly shrink even when there is ample αβ-tubulin around. This remarkable behavior was discovered in 1984 when Tim Mitchison and Marc Kirschner deduced that microtubules switch from growth to shrinkage when they lose their GTP caps. Here, I review the canonical explanation of dynamic instability that was fleshed out in the years after its discovery. Many aspects of this explanation have been recently subverted, particularly those related to how GTP-tubulin forms polymers and why GTP hydrolysis disrupts them. I describe these developments and speculate on how our explanation of dynamic instability can be changed to accommodate them.