Cargando…
An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data
The discrete data structure and large sequencing depth of RNA sequencing (RNA-seq) experiments can often generate outlier read counts in one or more RNA samples within a homogeneous group. Thus, how to identify and manage outlier observations in RNA-seq data is an emerging topic of interest. One of...
Autores principales: | George, Nysia I., Bowyer, John F., Crabtree, Nathaniel M., Chang, Ching-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454687/ https://www.ncbi.nlm.nih.gov/pubmed/26039068 http://dx.doi.org/10.1371/journal.pone.0125224 |
Ejemplares similares
-
Multi-class computational evolution: development, benchmark evaluation and application to RNA-Seq biomarker discovery
por: Crabtree, Nathaniel M., et al.
Publicado: (2017) -
Evaluating the Stability of RNA-Seq Transcriptome Profiles and Drug-Induced Immune-Related Expression Changes in Whole Blood
por: Bowyer, John F., et al.
Publicado: (2015) -
OD-seq: outlier detection in multiple sequence alignments
por: Jehl, Peter, et al.
Publicado: (2015) -
Robust principal component analysis for accurate outlier sample detection in RNA-Seq data
por: Chen, Xiaoying, et al.
Publicado: (2020) -
OutSingle: a novel method of detecting and injecting outliers in RNA-Seq count data using the optimal hard threshold for singular values
por: Salkovic, Edin, et al.
Publicado: (2023)