Cargando…
Protective Effects of Hydrogen-Rich Saline on Rats with Smoke Inhalation Injury
Objective. To explore the protective effects of hydrogen-rich saline on rats with smoke inhalation injury. Methods. 36 healthy male Sprague-Dawley rats were randomly divided into 3 groups (n = 12 per group): sham group (S), inhalation injury plus normal saline treatment group (I+NS), and inhalation...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454757/ https://www.ncbi.nlm.nih.gov/pubmed/26090070 http://dx.doi.org/10.1155/2015/106836 |
Sumario: | Objective. To explore the protective effects of hydrogen-rich saline on rats with smoke inhalation injury. Methods. 36 healthy male Sprague-Dawley rats were randomly divided into 3 groups (n = 12 per group): sham group (S), inhalation injury plus normal saline treatment group (I+NS), and inhalation injury plus hydrogen-rich saline treatment group (I+HS). 30 min after injury, normal saline and hydrogen-rich saline were injected intraperitoneally (5 mL/kg) in I+NS group and I+HS group, respectively. All rats were euthanized and blood and organ specimens were collected for determination 24 h after inhalation injury. Results. Tumor necrosis factor-alpha (TNF-α) levels, malondialdehyde (MDA) concentrations, nuclear factor kappa B (NF-κB) p65 expression, and apoptosis index (AI) in I+HS group were significantly decreased (P < 0.05), while superoxide dismutase (SOD) activities were increased compared with those in I+NS group; and a marked improvement in alveolar structure was also found after hydrogen-rich saline treatment. Conclusions. Hydrogen-rich saline treatment exerts protective effects in acute lung injury induced by inhalation injury, at least in part through the activation of anti-inflammatory and antioxidant pathways and inhibition of apoptosis. |
---|