Cargando…

Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modul...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Yoon-Young, Yun, Tae Gwang, Qaiser, Nadeem, Paik, Haemin, Roh, Hee Seok, Hong, Jongin, Hong, Seungbum, Han, Seung Min, No, Kwangsoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455118/
https://www.ncbi.nlm.nih.gov/pubmed/26040539
http://dx.doi.org/10.1038/srep10728
Descripción
Sumario:PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.