Cargando…
Inferring the connectivity of coupled oscillators from time-series statistical similarity analysis
A system composed by interacting dynamical elements can be represented by a network, where the nodes represent the elements that constitute the system, and the links account for their interactions, which arise due to a variety of mechanisms, and which are often unknown. A popular method for inferrin...
Autores principales: | Tirabassi, Giulio, Sevilla-Escoboza, Ricardo, Buldú, Javier M., Masoller, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455306/ https://www.ncbi.nlm.nih.gov/pubmed/26042395 http://dx.doi.org/10.1038/srep10829 |
Ejemplares similares
-
Inferring the connectivity of coupled chaotic oscillators using Kalman filtering
por: Forero-Ortiz, E., et al.
Publicado: (2021) -
Synchronization of networks of chaotic oscillators: Structural and dynamical datasets
por: Sevilla-Escoboza, Ricardo, et al.
Publicado: (2016) -
Unravelling the community structure of the climate system by using lags and symbolic time-series analysis
por: Tirabassi, Giulio, et al.
Publicado: (2016) -
Experimental datasets of networks of nonlinear oscillators: Structure and dynamics during the path to synchronization
por: Vera-Ávila, V.P., et al.
Publicado: (2019) -
Entropy-based early detection of critical transitions in spatial vegetation fields
por: Tirabassi, Giulio, et al.
Publicado: (2022)