Cargando…
Culture of East Indian sandalwood tree somatic embryos in air-lift bioreactors for production of santalols, phenolics and arabinogalactan proteins
The East Indian sandalwood tree, Santalum album, yields one of the costliest heartwoods and precious essential oil. Unsurprisingly, this endangered forest species is severely affected due to unmet global demands, illegal trade and harvesting, overharvesting and an epidemic mycoplasmal spike disease....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455360/ http://dx.doi.org/10.1093/aobpla/plt025 |
Sumario: | The East Indian sandalwood tree, Santalum album, yields one of the costliest heartwoods and precious essential oil. Unsurprisingly, this endangered forest species is severely affected due to unmet global demands, illegal trade and harvesting, overharvesting and an epidemic mycoplasmal spike disease. In vitro micropropagation endeavours have resulted in defined in vitro stages such as somatic embryos that are amenable to mass production in bioreactors. We report on somatic embryo production in a 10-L air-lift-type bioreactor, and compare the growth and biochemical parameters with those of a 2-L air-lift-type bioreactor. For the 10-L bioreactor with biomass (475.7 ± 18 g fresh weight; P < 0.01), concomitantly santalols (5.2 ± 0.15 mg L(−1); P < 0.05), phenolics (31 ± 1.6 mg L(−1)) and arabinogalactan proteins (AGPs) (39 ± 3.1 mg L(−1); P < 0.05) are produced in 28 days. In addition, we identified and quantified several santalols and phenolics by means of high-performance thin-layer chromatography and reverse-phase high-pressure liquid chromatography analyses, respectively. Results indicate that 10-L-capacity air-lift bioreactors are capable of supporting somatic embryo cultures, while the extracellular medium provides opportunities for production of industrial raw materials such as santalols, phenolics and AGPs. This will prove useful for further optimization and scale-up studies of plant-produced metabolites. |
---|