Cargando…
Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations
Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is fou...
Autores principales: | Zhang, Yi, Ren, Jinchang, Jiang, Jianmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455534/ https://www.ncbi.nlm.nih.gov/pubmed/26089862 http://dx.doi.org/10.1155/2015/423581 |
Ejemplares similares
-
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Combination of minimum enclosing balls classifier with SVM in coal-rock recognition
por: Song, QingJun, et al.
Publicado: (2017) -
PCG Classification Using Multidomain Features and SVM Classifier
por: Tang, Hong, et al.
Publicado: (2018) -
Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA
por: Jiang, Huiyan, et al.
Publicado: (2015) -
Computer-Aided Lung Nodule Recognition by SVM Classifier Based on Combination of Random Undersampling and SMOTE
por: Sui, Yuan, et al.
Publicado: (2015)