Cargando…

Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells

The canonical WNT-β-catenin pathway is essential for self-renewal, growth and survival of AML stem/blast progenitor cells (BPCs). Deregulated WNT signaling inhibits degradation of β-catenin, causing increased nuclear translocation and co-factor activity of β-catenin with the transcriptional regulato...

Descripción completa

Detalles Bibliográficos
Autores principales: Fiskus, Warren, Sharma, Sunil, Saha, Saikat, Shah, Bhavin, Devaraj, Santhana G. T., Sun, Baohua, Horrigan, Stephen, Leveque, Christopher, Zu, Youli, Iyer, Swaminathan, Bhalla, Kapil N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456205/
https://www.ncbi.nlm.nih.gov/pubmed/25482131
http://dx.doi.org/10.1038/leu.2014.340
Descripción
Sumario:The canonical WNT-β-catenin pathway is essential for self-renewal, growth and survival of AML stem/blast progenitor cells (BPCs). Deregulated WNT signaling inhibits degradation of β-catenin, causing increased nuclear translocation and co-factor activity of β-catenin with the transcriptional regulator TCF4/LEF1 in AML BPCs. Here, we determined the pre-clinical anti-AML activity of the anthraquinone oxime-analog BC2059 (BC), known to attenuate β-catenin levels. BC treatment disrupted the binding of β-catenin with the scaffold protein TBL1 (transducin β-like 1) and proteasomal degradation and decline in the nuclear levels of β-catenin. This was associated with reduced transcriptional activity of TCF4 and expression of its target genes, cyclin D1, c-MYC and survivin. BC treatment dose-dependently induced apoptosis of cultured and primary AML BPCs. Treatment with BC also significantly improved the median survival of immune-depleted mice engrafted with either cultured or primary AML BPCs exhibiting nuclear expression of β-catenin. Co-treatment with the pan-histone deacetylase inhibitor panobinostat and BC synergistically induced apoptosis of cultured and primary AML BPCs, including those expressing FLT3-ITD, as well as further significantly improved the survival of immune-depleted mice engrafted with primary AML BPCs. These findings underscore the promising pre-clinical activity and warrant further testing of BC against human AML, especially those expressing FLT3-ITD.