Cargando…

Noninvasive imaging of sialyltransferase activity in living cells by chemoselective recognition

To elucidate the biological and pathological functions of sialyltransferases (STs), intracellular ST activity evaluation is necessary. Focusing on the lack of noninvasive methods for obtaining the dynamic activity information, this work designs a sensing platform for in situ FRET imaging of intracel...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Lei, Ding, Lin, Yang, Min, Ju, Huangxian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456940/
https://www.ncbi.nlm.nih.gov/pubmed/26046317
http://dx.doi.org/10.1038/srep10947
Descripción
Sumario:To elucidate the biological and pathological functions of sialyltransferases (STs), intracellular ST activity evaluation is necessary. Focusing on the lack of noninvasive methods for obtaining the dynamic activity information, this work designs a sensing platform for in situ FRET imaging of intracellular ST activity and tracing of sialylation process. The system uses tetramethylrhodamine isothiocyanate labeled asialofetuin (TRITC-AF) as a ST substrate and fluorescein isothiocyanate labeled 3-aminophenylboronic acid (FITC-APBA) as the chemoselective recognition probe of sialylation product, both of which are encapsulated in a liposome vesicle for cellular delivery. The recognition of FITC-APBA to sialylated TRITC-AF leads to the FRET signal that is analyzed by FRET efficiency images. This strategy has been used to evaluate the correlation of ST activity with malignancy and cell surface sialylation, and the sialylation inhibition activity of inhibitors. This work provides a powerful noninvasive tool for glycan biosynthesis mechanism research, cancer diagnostics and drug development.