Cargando…

Size and Shape Analysis of Error-Prone Shape Data

We consider the problem of comparing sizes and shapes of objects when landmark data are prone to measurement error. We show that naive implementation of ordinary Procrustes analysis that ignores measurement error can compromise inference. To account for measurement error, we propose the conditional...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Jiejun, Dryden, Ian L., Huang, Xianzheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456951/
https://www.ncbi.nlm.nih.gov/pubmed/26109745
http://dx.doi.org/10.1080/01621459.2014.908779
_version_ 1782374913126957056
author Du, Jiejun
Dryden, Ian L.
Huang, Xianzheng
author_facet Du, Jiejun
Dryden, Ian L.
Huang, Xianzheng
author_sort Du, Jiejun
collection PubMed
description We consider the problem of comparing sizes and shapes of objects when landmark data are prone to measurement error. We show that naive implementation of ordinary Procrustes analysis that ignores measurement error can compromise inference. To account for measurement error, we propose the conditional score method for matching configurations, which guarantees consistent inference under mild model assumptions. The effects of measurement error on inference from naive Procrustes analysis and the performance of the proposed method are illustrated via simulation and application in three real data examples. Supplementary materials for this article are available online.
format Online
Article
Text
id pubmed-4456951
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-44569512015-06-22 Size and Shape Analysis of Error-Prone Shape Data Du, Jiejun Dryden, Ian L. Huang, Xianzheng J Am Stat Assoc Original Articles We consider the problem of comparing sizes and shapes of objects when landmark data are prone to measurement error. We show that naive implementation of ordinary Procrustes analysis that ignores measurement error can compromise inference. To account for measurement error, we propose the conditional score method for matching configurations, which guarantees consistent inference under mild model assumptions. The effects of measurement error on inference from naive Procrustes analysis and the performance of the proposed method are illustrated via simulation and application in three real data examples. Supplementary materials for this article are available online. Taylor & Francis 2015-01-02 2015-04-22 /pmc/articles/PMC4456951/ /pubmed/26109745 http://dx.doi.org/10.1080/01621459.2014.908779 Text en © 2015 The Author(s). Published with license by Taylor & Francis This is an Open Access article. Non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly attributed, cited, and is not altered, transformed, or built upon in any way, is permitted. The moral rights of the named author(s) have been asserted.
spellingShingle Original Articles
Du, Jiejun
Dryden, Ian L.
Huang, Xianzheng
Size and Shape Analysis of Error-Prone Shape Data
title Size and Shape Analysis of Error-Prone Shape Data
title_full Size and Shape Analysis of Error-Prone Shape Data
title_fullStr Size and Shape Analysis of Error-Prone Shape Data
title_full_unstemmed Size and Shape Analysis of Error-Prone Shape Data
title_short Size and Shape Analysis of Error-Prone Shape Data
title_sort size and shape analysis of error-prone shape data
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456951/
https://www.ncbi.nlm.nih.gov/pubmed/26109745
http://dx.doi.org/10.1080/01621459.2014.908779
work_keys_str_mv AT dujiejun sizeandshapeanalysisoferrorproneshapedata
AT drydenianl sizeandshapeanalysisoferrorproneshapedata
AT huangxianzheng sizeandshapeanalysisoferrorproneshapedata