Cargando…
Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
Objective Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks, particularly for pharmacovigilance, via the use of natural language processing (NLP) techniques. However, the la...
Autores principales: | Nikfarjam, Azadeh, Sarker, Abeed, O’Connor, Karen, Ginn, Rachel, Gonzalez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457113/ https://www.ncbi.nlm.nih.gov/pubmed/25755127 http://dx.doi.org/10.1093/jamia/ocu041 |
Ejemplares similares
-
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019) -
Comment on: “Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts”
por: Magge, Arjun, et al.
Publicado: (2019) -
Phonetic Spelling Filter for Keyword Selection in Drug Mention Mining from Social Media
por: Pimpalkhute, Pranoti, et al.
Publicado: (2014) -
DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
por: Magge, Arjun, et al.
Publicado: (2021) -
Active neural networks to detect mentions of changes to medication treatment in social media
por: Weissenbacher, Davy, et al.
Publicado: (2021)