Cargando…

EGCG regulates the cross-talk between JWA and topoisomerase IIα in non-small-cell lung cancer (NSCLC) cells

(-)-epigallocatechin-3-gallate (EGCG) is a well-known cancer chemopreventive agent. The potential mechanisms include regulation of multiple molecules. Carcinogenesis in lung cancer is related to the imbalance of tumor suppressor and oncogene. JWA is a structurally novel microtubule-binding protein a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuan, Shen, Xin, Wang, Xueming, Li, Aiping, Wang, Pengqi, Jiang, Pan, Zhou, Jianwei, Feng, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457146/
https://www.ncbi.nlm.nih.gov/pubmed/26046674
http://dx.doi.org/10.1038/srep11009
Descripción
Sumario:(-)-epigallocatechin-3-gallate (EGCG) is a well-known cancer chemopreventive agent. The potential mechanisms include regulation of multiple molecules. Carcinogenesis in lung cancer is related to the imbalance of tumor suppressor and oncogene. JWA is a structurally novel microtubule-binding protein and is a potential tumor suppressor. DNA topoisomerase IIα is a nuclear enzyme that governs DNA topology and is usually highly expressed in many types of cancer. It serves as a target of anticancer drugs. In the current study, the regulation of JWA and topoisomerase IIα by EGCG, and thereafter the mutual interaction between them was investigated. The results revealed that EGCG up-regulated JWA while decreased topoisomerase IIα expression in both human non-small cell lung cancer (NSCLC) cells and an NSCLC xenograft mice model. There was a negative correlation between JWA and topoisomerase IIα in NSCLC as well as in human NSCLC tissue specimens. Topoisomerase IIα overexpression reduced JWA at the translational level. Meanwhile, JWA-induced topoisomerase IIα degradation was regulated both in the transcriptional and post-translational level. Interestingly, JWA and topoisomerase IIα regulated each other in the cells arrested in G2/M. Furthermore, JWA and topoisomerase IIα synergistically affected NCI-H460 cells invasion. These results may serve a novel mechanism for cancer prevention.