Cargando…
A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model
Vessel segmentation in retinal fundus images is a preliminary step to clinical diagnosis for some systemic diseases and some eye diseases. The performances of existing methods for segmenting small vessels which are usually of more importance than the main vessels in a clinical diagnosis are not sati...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457795/ https://www.ncbi.nlm.nih.gov/pubmed/26047128 http://dx.doi.org/10.1371/journal.pone.0127748 |
_version_ | 1782374994538397696 |
---|---|
author | Dai, Peishan Luo, Hanyuan Sheng, Hanwei Zhao, Yali Li, Ling Wu, Jing Zhao, Yuqian Suzuki, Kenji |
author_facet | Dai, Peishan Luo, Hanyuan Sheng, Hanwei Zhao, Yali Li, Ling Wu, Jing Zhao, Yuqian Suzuki, Kenji |
author_sort | Dai, Peishan |
collection | PubMed |
description | Vessel segmentation in retinal fundus images is a preliminary step to clinical diagnosis for some systemic diseases and some eye diseases. The performances of existing methods for segmenting small vessels which are usually of more importance than the main vessels in a clinical diagnosis are not satisfactory in clinical use. In this paper, we present a method for both main and peripheral vessel segmentation. A local gray-level change enhancement algorithm called gray-voting is used to enhance the small vessels, while a two-dimensional Gabor wavelet is used to extract the main vessels. We fuse the gray-voting results with the 2D-Gabor filter results as pre-processing outcome. A Gaussian mixture model is then used to extract vessel clusters from the pre-processing outcome, while small vessels fragments are obtained using another gray-voting process, which complements the vessel cluster extraction already performed. At the last step, we eliminate the fragments that do not belong to the vessels based on the shape of the fragments. We evaluated the approach with two publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et at., 2000) datasets with manually segmented results. For the STARE dataset, when using the second manually segmented results which include much more small vessels than the first manually segmented results as the “gold standard,” this approach achieved an average sensitivity, accuracy and specificity of 65.0%, 92.1% and 97.0%, respectively. The sensitivities of this approach were much higher than those of the other existing methods, with comparable specificities; these results thus demonstrated that this approach was sensitive to detection of small vessels. |
format | Online Article Text |
id | pubmed-4457795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44577952015-06-09 A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model Dai, Peishan Luo, Hanyuan Sheng, Hanwei Zhao, Yali Li, Ling Wu, Jing Zhao, Yuqian Suzuki, Kenji PLoS One Research Article Vessel segmentation in retinal fundus images is a preliminary step to clinical diagnosis for some systemic diseases and some eye diseases. The performances of existing methods for segmenting small vessels which are usually of more importance than the main vessels in a clinical diagnosis are not satisfactory in clinical use. In this paper, we present a method for both main and peripheral vessel segmentation. A local gray-level change enhancement algorithm called gray-voting is used to enhance the small vessels, while a two-dimensional Gabor wavelet is used to extract the main vessels. We fuse the gray-voting results with the 2D-Gabor filter results as pre-processing outcome. A Gaussian mixture model is then used to extract vessel clusters from the pre-processing outcome, while small vessels fragments are obtained using another gray-voting process, which complements the vessel cluster extraction already performed. At the last step, we eliminate the fragments that do not belong to the vessels based on the shape of the fragments. We evaluated the approach with two publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et at., 2000) datasets with manually segmented results. For the STARE dataset, when using the second manually segmented results which include much more small vessels than the first manually segmented results as the “gold standard,” this approach achieved an average sensitivity, accuracy and specificity of 65.0%, 92.1% and 97.0%, respectively. The sensitivities of this approach were much higher than those of the other existing methods, with comparable specificities; these results thus demonstrated that this approach was sensitive to detection of small vessels. Public Library of Science 2015-06-05 /pmc/articles/PMC4457795/ /pubmed/26047128 http://dx.doi.org/10.1371/journal.pone.0127748 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Dai, Peishan Luo, Hanyuan Sheng, Hanwei Zhao, Yali Li, Ling Wu, Jing Zhao, Yuqian Suzuki, Kenji A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model |
title | A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model |
title_full | A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model |
title_fullStr | A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model |
title_full_unstemmed | A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model |
title_short | A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model |
title_sort | new approach to segment both main and peripheral retinal vessels based on gray-voting and gaussian mixture model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457795/ https://www.ncbi.nlm.nih.gov/pubmed/26047128 http://dx.doi.org/10.1371/journal.pone.0127748 |
work_keys_str_mv | AT daipeishan anewapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT luohanyuan anewapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT shenghanwei anewapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT zhaoyali anewapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT liling anewapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT wujing anewapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT zhaoyuqian anewapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT suzukikenji anewapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT daipeishan newapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT luohanyuan newapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT shenghanwei newapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT zhaoyali newapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT liling newapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT wujing newapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT zhaoyuqian newapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel AT suzukikenji newapproachtosegmentbothmainandperipheralretinalvesselsbasedongrayvotingandgaussianmixturemodel |