Cargando…

Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals

PURPOSE: The triterpene oleanolic acid (OA) is known to possess antihypertensive actions. In the present study we to compared the effects of the triterpene on mean arterial blood pressure (MAP) and kidney function following acute administration in normotensive animals with those of its related olean...

Descripción completa

Detalles Bibliográficos
Autores principales: Madlala, Hlengiwe Pretty, Van Heerden, Fanie Retief, Mubagwa, Kanigula, Musabayane, Cephas Tagumirwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457832/
https://www.ncbi.nlm.nih.gov/pubmed/26046776
http://dx.doi.org/10.1371/journal.pone.0128192
_version_ 1782375003430322176
author Madlala, Hlengiwe Pretty
Van Heerden, Fanie Retief
Mubagwa, Kanigula
Musabayane, Cephas Tagumirwa
author_facet Madlala, Hlengiwe Pretty
Van Heerden, Fanie Retief
Mubagwa, Kanigula
Musabayane, Cephas Tagumirwa
author_sort Madlala, Hlengiwe Pretty
collection PubMed
description PURPOSE: The triterpene oleanolic acid (OA) is known to possess antihypertensive actions. In the present study we to compared the effects of the triterpene on mean arterial blood pressure (MAP) and kidney function following acute administration in normotensive animals with those of its related oleanane synthetic derivatives (brominated oleanolic acid, Br-OA and oleanolic acid methyl ester, Me-OA). We also used experimental models of hypertension to further explore the effects of sub-chronic oral OA treatment and evaluated influences on oxidative status. METHODS: OA was extracted from dried flower buds of Syzygium aromaticum using a previously validated protocol in our laboratory. Me-OA and Br-OA were synthesized according to a method described. Rats were supplemented with lithium chloride (12 mmol L(-1)) prior to experimentation in order to raise plasma lithium to allow measurements of lithium clearance and fractional excretion (FE(Li)) as indices of proximal tubular Na(+) handling. Anaesthetized animals were continuously infused via the right jugular with 0.077M NaCl. MAP was measured via a cannula inserted in the carotid artery, and urine was collected through a cannula inserted in the bladder. After a 3.5 h equilibration, MAP, urine flow, electrolyte excretion rates were determined for 4 h of 1 h control, 1.5 h treatment and 1.5 h recovery periods. OA, Me-OA and Br-OA were added to the infusate during the treatment period. We evaluated sub-chronic effects on MAP and kidney function in normotensive Wistar rats and in two animal models of hypertension, spontaneously hypertensive rats (SHR) and Dahl salt-sensitive (DSS) rats, during 9-week administration of OA (p.o.). Tissue oxidative status was examined in these animals at the end of the study. Increasing evidence suggests that and renal function disturbances and oxidative stress play major roles in the pathogenesis of hypertension. RESULTS: Acute infusion OA and oleanane derivatives displayed qualitatively similar effects in decreasing MAP and increasing urinary Na(+) outputs. The drugs increased the FE(Na) and FE(Li) without influencing GFR indicating that at least part of the overall natriuretic effect involved proximal tubular Na(+) reabsorption. Sub-chronic OA administration (p.o.) also elicited hypotensive responses in Wistar, DSS and SHR rats. The MAP lowering effect was more marked in hypertensive animals and were positively correlated with increased urinary Na(+) excretion. Compared with respective control rats, OA treatment reduced malondialdehyde (MDA, a marker of lipid peroxidation) and increased activities of antioxidant enzymes; superoxide dismutase and glutathione peroxidase in hepatic, cardiac and renal tissues. CONCLUSIONS: OA and oleanane derivatives have similar effects on MAP, kidney function and oxidative stress. The amelioration of oxidative stress and blood pressure lowering effects by OA are more marked in hypertensive animals and correlated with an increased urinary Na(+) output. NOVELTY OF THE WORK: The results of this study are novel in that they show 1) a correlation between blood pressure reduction and increased urinary Na(+) excretion by OA, 2) a more marked MAP reduction in hypertensive animals and 3) a drug-induced decrease in proximal tubule Na(+) reabsorption. The results may also be clinically relevant because OA is effective via oral administration.
format Online
Article
Text
id pubmed-4457832
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44578322015-06-09 Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals Madlala, Hlengiwe Pretty Van Heerden, Fanie Retief Mubagwa, Kanigula Musabayane, Cephas Tagumirwa PLoS One Research Article PURPOSE: The triterpene oleanolic acid (OA) is known to possess antihypertensive actions. In the present study we to compared the effects of the triterpene on mean arterial blood pressure (MAP) and kidney function following acute administration in normotensive animals with those of its related oleanane synthetic derivatives (brominated oleanolic acid, Br-OA and oleanolic acid methyl ester, Me-OA). We also used experimental models of hypertension to further explore the effects of sub-chronic oral OA treatment and evaluated influences on oxidative status. METHODS: OA was extracted from dried flower buds of Syzygium aromaticum using a previously validated protocol in our laboratory. Me-OA and Br-OA were synthesized according to a method described. Rats were supplemented with lithium chloride (12 mmol L(-1)) prior to experimentation in order to raise plasma lithium to allow measurements of lithium clearance and fractional excretion (FE(Li)) as indices of proximal tubular Na(+) handling. Anaesthetized animals were continuously infused via the right jugular with 0.077M NaCl. MAP was measured via a cannula inserted in the carotid artery, and urine was collected through a cannula inserted in the bladder. After a 3.5 h equilibration, MAP, urine flow, electrolyte excretion rates were determined for 4 h of 1 h control, 1.5 h treatment and 1.5 h recovery periods. OA, Me-OA and Br-OA were added to the infusate during the treatment period. We evaluated sub-chronic effects on MAP and kidney function in normotensive Wistar rats and in two animal models of hypertension, spontaneously hypertensive rats (SHR) and Dahl salt-sensitive (DSS) rats, during 9-week administration of OA (p.o.). Tissue oxidative status was examined in these animals at the end of the study. Increasing evidence suggests that and renal function disturbances and oxidative stress play major roles in the pathogenesis of hypertension. RESULTS: Acute infusion OA and oleanane derivatives displayed qualitatively similar effects in decreasing MAP and increasing urinary Na(+) outputs. The drugs increased the FE(Na) and FE(Li) without influencing GFR indicating that at least part of the overall natriuretic effect involved proximal tubular Na(+) reabsorption. Sub-chronic OA administration (p.o.) also elicited hypotensive responses in Wistar, DSS and SHR rats. The MAP lowering effect was more marked in hypertensive animals and were positively correlated with increased urinary Na(+) excretion. Compared with respective control rats, OA treatment reduced malondialdehyde (MDA, a marker of lipid peroxidation) and increased activities of antioxidant enzymes; superoxide dismutase and glutathione peroxidase in hepatic, cardiac and renal tissues. CONCLUSIONS: OA and oleanane derivatives have similar effects on MAP, kidney function and oxidative stress. The amelioration of oxidative stress and blood pressure lowering effects by OA are more marked in hypertensive animals and correlated with an increased urinary Na(+) output. NOVELTY OF THE WORK: The results of this study are novel in that they show 1) a correlation between blood pressure reduction and increased urinary Na(+) excretion by OA, 2) a more marked MAP reduction in hypertensive animals and 3) a drug-induced decrease in proximal tubule Na(+) reabsorption. The results may also be clinically relevant because OA is effective via oral administration. Public Library of Science 2015-06-05 /pmc/articles/PMC4457832/ /pubmed/26046776 http://dx.doi.org/10.1371/journal.pone.0128192 Text en © 2015 Madlala et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Madlala, Hlengiwe Pretty
Van Heerden, Fanie Retief
Mubagwa, Kanigula
Musabayane, Cephas Tagumirwa
Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals
title Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals
title_full Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals
title_fullStr Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals
title_full_unstemmed Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals
title_short Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals
title_sort changes in renal function and oxidative status associated with the hypotensive effects of oleanolic acid and related synthetic derivatives in experimental animals
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457832/
https://www.ncbi.nlm.nih.gov/pubmed/26046776
http://dx.doi.org/10.1371/journal.pone.0128192
work_keys_str_mv AT madlalahlengiwepretty changesinrenalfunctionandoxidativestatusassociatedwiththehypotensiveeffectsofoleanolicacidandrelatedsyntheticderivativesinexperimentalanimals
AT vanheerdenfanieretief changesinrenalfunctionandoxidativestatusassociatedwiththehypotensiveeffectsofoleanolicacidandrelatedsyntheticderivativesinexperimentalanimals
AT mubagwakanigula changesinrenalfunctionandoxidativestatusassociatedwiththehypotensiveeffectsofoleanolicacidandrelatedsyntheticderivativesinexperimentalanimals
AT musabayanecephastagumirwa changesinrenalfunctionandoxidativestatusassociatedwiththehypotensiveeffectsofoleanolicacidandrelatedsyntheticderivativesinexperimentalanimals