Cargando…

Polyelectrolyte-mediated increase of biofilm mass formation

BACKGROUND: Biofilm formation is associated with various aspects of bacterial and fungal infection. This study was designed to assess the impact of diverse natural polyelectrolytes, such as DNA, F-actin, neurofilaments (NFs), vimentin and purified Pf1 bacteriophage on biofilm formation and swarming...

Descripción completa

Detalles Bibliográficos
Autores principales: Bucki, Robert, Niemirowicz, Katarzyna, Wnorowska, Urszula, Wątek, Marzena, Byfield, Fitzroy J., Cruz, Katrina, Wróblewska, Marta, Janmey, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458031/
https://www.ncbi.nlm.nih.gov/pubmed/26048182
http://dx.doi.org/10.1186/s12866-015-0457-x
Descripción
Sumario:BACKGROUND: Biofilm formation is associated with various aspects of bacterial and fungal infection. This study was designed to assess the impact of diverse natural polyelectrolytes, such as DNA, F-actin, neurofilaments (NFs), vimentin and purified Pf1 bacteriophage on biofilm formation and swarming motility of select pathogens including Pseudomonas aeruginosa associated with lung infections in CF patients. RESULTS: The bacteriophage Pf1 (1 mg/ml) significantly increased biofilm mass produced by Pseudomonas aeruginosa P14, Escherichia coli RS218 and Bacillus subtilis ATCC6051. DNA, F-actin, NFs and Pf1 also increased biofilm mass of the fungal C. albicans 1409 strain. Addition of F-actin, DNA or Pf1 bacteriophage to 0.5% agar plates increased swarming motility of Pseudomonas aeruginosa Xen5. CONCLUSIONS: The presence of polyelectrolytes at infection sites is likely to promote biofilm growth and bacterial swarming.