Cargando…
Adaptively Tuned Iterative Low Dose CT Image Denoising
Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regular...
Autores principales: | Hashemi, SayedMasoud, Paul, Narinder S., Beheshti, Soosan, Cobbold, Richard S. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458284/ https://www.ncbi.nlm.nih.gov/pubmed/26089972 http://dx.doi.org/10.1155/2015/638568 |
Ejemplares similares
-
Accelerated Compressed Sensing Based CT Image Reconstruction
por: Hashemi, SayedMasoud, et al.
Publicado: (2015) -
Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
por: Ai, Danni, et al.
Publicado: (2015) -
Convolutional auto-encoder for image denoising of ultra-low-dose CT
por: Nishio, Mizuho, et al.
Publicado: (2017) -
Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function
por: Li, Zhihua, et al.
Publicado: (2021) -
Self‐adaption and texture generation: A hybrid loss function for low‐dose CT denoising
por: Wang, Zhenchuan, et al.
Publicado: (2023)