Cargando…

Fresh Garlic Extract Enhances the Antimicrobial Activities of Antibiotics on Resistant Strains in Vitro

BACKGROUND: Infections caused by strains with multi-drug resistance are difficult to treat with standard antibiotics. Garlic is a powerful remedy to protect against infections of many bacteria, fungi and viruses. However, little is known about the potentials of fresh garlic extract (FGE) to improve...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Guoliang, Ma, Xudong, Deng, Lisha, Zhao, Xixi, Wei, Yuejiao, Gao, Zhongyang, Jia, Jing, Xu, Jiru, Sun, Chaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Kowsar 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458355/
https://www.ncbi.nlm.nih.gov/pubmed/26060559
http://dx.doi.org/10.5812/jjm.14814
Descripción
Sumario:BACKGROUND: Infections caused by strains with multi-drug resistance are difficult to treat with standard antibiotics. Garlic is a powerful remedy to protect against infections of many bacteria, fungi and viruses. However, little is known about the potentials of fresh garlic extract (FGE) to improve the sensitivity of multi-drug resistant strains to antibiotics. OBJECTIVES: In this study, we used the disk diffusion method to investigate the antimicrobial activities of FGE and the combination of antibiotics with FGE, on methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans, to evaluate the interactions between antibiotics and FGE. MATERIALS AND METHODS: Clinical isolates were isolated from clinical specimens obtained from the inpatients at the First Affiliated Hospital of Xi’an Jiaotong University Health Science Center. The isolates consisted of MRSA, (n = 30), C. albicans (n = 30) and P. aeruginosa (n = 30). Quality control for CLSI (Clinical and Laboratory Standards Institute) disk diffusion was performed using S. aureus ATCC®25923, C. albicans ATCC®90028 and P. aeruginosa ATCC®27853. The 93 microorganisms were divided into four groups in a factorial design: control (deionized water), FGE, antibiotics without FGE, and antibiotics with FGE. Next, antibacterial activity was evaluated by measuring the diameter of inhibition zones according to performance standards for antimicrobial susceptibility testing of the Clinical and Laboratory Standards Institute (CLSI, formerly NCCLS). RESULTS: Fresh garlic extract displayed evident inhibition properties against C. albicans and MRSA, yet weak inhibition properties against P. aeruginosa. Additionally, FGE showed the potential to improve the effect of antibiotics on antibiotic resistant pathogens. The synergism of fluconazole and itraconazole with FGE on C. albicans yielded larger sized inhibition zones compared with fluconazole and itraconazole without FGE (P < 0.01). The factorial analysis represents intense positive interaction effects (P < 0.01). The synergism of cefotaxime and ceftriaxone with FGE on P. aeruginosa yielded larger sized inhibition zones than cefotaxime and ceftriaxone without FGE (P < 0.01). The factorial analysis represents intense positive interaction effects (P < 0.01). CONCLUSIONS: The results suggest that FGE can improve the antibiotic sensitivity of these pathogens to some antibiotics.