Cargando…
Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator
Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we rep...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458862/ https://www.ncbi.nlm.nih.gov/pubmed/26028354 http://dx.doi.org/10.1038/ncomms8258 |
Sumario: | Ionic actuators have attracted attention due to their remarkably large strain under low-voltage stimulation. Because actuation performance is mainly dominated by the electrochemical and electromechanical processes of the electrode layer, the electrode material and structure are crucial. Here, we report a graphitic carbon nitride nanosheet electrode-based ionic actuator that displays high electrochemical activity and electromechanical conversion abilities, including large specific capacitance (259.4 F g(−1)) with ionic liquid as the electrolyte, fast actuation response (0.5±0.03% in 300 ms), large electromechanical strain (0.93±0.03%) and high actuation stability (100,000 cycles) under 3 V. The key to the high performance lies in the hierarchical pore structure with dominant size <2 nm, optimal pyridinic nitrogen active sites (6.78%) and effective conductivity (382 S m(−1)) of the electrode. Our study represents an important step towards artificial muscle technology in which heteroatom modulation in electrodes plays an important role in promoting electrochemical actuation performance. |
---|