Cargando…
A novel capsule-based self-recovery system with a chloride ion trigger
Steel is prone to corrosion induced by chloride ions, which is a serious threat to reinforced concrete structures, especially in marine environments. In this work, we report a novel capsule-based self-recovery system that utilizes chloride ions as a trigger. These capsules, which are functionalized...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458884/ https://www.ncbi.nlm.nih.gov/pubmed/26051224 http://dx.doi.org/10.1038/srep10866 |
Sumario: | Steel is prone to corrosion induced by chloride ions, which is a serious threat to reinforced concrete structures, especially in marine environments. In this work, we report a novel capsule-based self-recovery system that utilizes chloride ions as a trigger. These capsules, which are functionalized via a smart response to chloride ions, are fabricated using a silver alginate hydrogel that disintegrates upon contact with chloride ions, and thereby releases the activated core materials. The experimental results show that the smart capsules respond to a very low concentration of chloride ions (0.1 wt%). Therefore, we believe that this novel capsule-based self-recovery system will exhibit a promising prospect for self-healing or corrosion inhibition applications. |
---|