Cargando…

Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor

Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an effi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yonghuan, Wang, Rutao, Yan, Xingbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459188/
https://www.ncbi.nlm.nih.gov/pubmed/26053847
http://dx.doi.org/10.1038/srep11095
Descripción
Sumario:Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)(2) nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)(2) nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g(−1) at 0.5 A g(−1) is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)(2) nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g(−1) at 100 A g(−1). On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg(−1) and an ultrahigh power density of 40 000 W kg(−1).