Cargando…

The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test()

This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archet...

Descripción completa

Detalles Bibliográficos
Autor principal: Kerschbamer, Rudolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IASP 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459445/
https://www.ncbi.nlm.nih.gov/pubmed/26089571
http://dx.doi.org/10.1016/j.euroecorev.2015.01.008
_version_ 1782375223574659072
author Kerschbamer, Rudolf
author_facet Kerschbamer, Rudolf
author_sort Kerschbamer, Rudolf
collection PubMed
description This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archetypes that nests all empirically relevant types considered in previous work; and (ii) gives rise to a clean experimental identification procedure – the Equality Equivalence Test – that discriminates between archetypes according to core features of preferences rather than properties of specific modeling variants. As a by-product the test yields a two-dimensional index of preference intensity.
format Online
Article
Text
id pubmed-4459445
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher IASP
record_format MEDLINE/PubMed
spelling pubmed-44594452015-06-16 The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test() Kerschbamer, Rudolf Eur Econ Rev Article This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archetypes that nests all empirically relevant types considered in previous work; and (ii) gives rise to a clean experimental identification procedure – the Equality Equivalence Test – that discriminates between archetypes according to core features of preferences rather than properties of specific modeling variants. As a by-product the test yields a two-dimensional index of preference intensity. IASP 2015-05 /pmc/articles/PMC4459445/ /pubmed/26089571 http://dx.doi.org/10.1016/j.euroecorev.2015.01.008 Text en © 2015 The Author http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kerschbamer, Rudolf
The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test()
title The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test()
title_full The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test()
title_fullStr The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test()
title_full_unstemmed The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test()
title_short The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test()
title_sort geometry of distributional preferences and a non-parametric identification approach: the equality equivalence test()
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459445/
https://www.ncbi.nlm.nih.gov/pubmed/26089571
http://dx.doi.org/10.1016/j.euroecorev.2015.01.008
work_keys_str_mv AT kerschbamerrudolf thegeometryofdistributionalpreferencesandanonparametricidentificationapproachtheequalityequivalencetest
AT kerschbamerrudolf geometryofdistributionalpreferencesandanonparametricidentificationapproachtheequalityequivalencetest