Cargando…
Identification and monitoring of brain activity based on stochastic relevance analysis of short–time EEG rhythms
BACKGROUND: The extraction of physiological rhythms from electroencephalography (EEG) data and their automated analyses are extensively studied in clinical monitoring, to find traces of interictal/ictal states of epilepsy. METHODS: Because brain wave rhythms in normal and interictal/ictal events, di...
Autores principales: | Duque-Muñoz, Leonardo, Espinosa-Oviedo, Jairo Jose, Castellanos-Dominguez, Cesar German |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459461/ https://www.ncbi.nlm.nih.gov/pubmed/25168571 http://dx.doi.org/10.1186/1475-925X-13-123 |
Ejemplares similares
-
Pattern dynamics and stochasticity of the brain rhythms
por: Hoffman, Clarissa, et al.
Publicado: (2023) -
A Novel OpenBCI Framework for EEG-Based Neurophysiological Experiments
por: Cardona-Álvarez, Yeison Nolberto, et al.
Publicado: (2023) -
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
por: García-Murillo, Daniel Guillermo, et al.
Publicado: (2023) -
Time in Brain: How Biological Rhythms Impact on EEG Signals and on EEG-Derived Brain Networks
por: Lehnertz, Klaus, et al.
Publicado: (2021) -
Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns
por: Alvarez-Meza, Andres M., et al.
Publicado: (2017)