Cargando…
A short proof of the Doob–Meyer theorem
Every submartingale [Formula: see text] of class [Formula: see text] has a unique Doob–Meyer decomposition [Formula: see text] , where [Formula: see text] is a martingale and [Formula: see text] is a predictable increasing process starting at 0. We provide a short proof of the Doob–Meyer decompositi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459556/ https://www.ncbi.nlm.nih.gov/pubmed/30976134 http://dx.doi.org/10.1016/j.spa.2011.12.001 |
_version_ | 1782375239427031040 |
---|---|
author | Beiglböck, Mathias Schachermayer, Walter Veliyev, Bezirgen |
author_facet | Beiglböck, Mathias Schachermayer, Walter Veliyev, Bezirgen |
author_sort | Beiglböck, Mathias |
collection | PubMed |
description | Every submartingale [Formula: see text] of class [Formula: see text] has a unique Doob–Meyer decomposition [Formula: see text] , where [Formula: see text] is a martingale and [Formula: see text] is a predictable increasing process starting at 0. We provide a short proof of the Doob–Meyer decomposition theorem. Several previously known arguments are included to keep the paper self-contained. |
format | Online Article Text |
id | pubmed-4459556 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-44595562019-04-09 A short proof of the Doob–Meyer theorem Beiglböck, Mathias Schachermayer, Walter Veliyev, Bezirgen Stoch Process Their Appl Article Every submartingale [Formula: see text] of class [Formula: see text] has a unique Doob–Meyer decomposition [Formula: see text] , where [Formula: see text] is a martingale and [Formula: see text] is a predictable increasing process starting at 0. We provide a short proof of the Doob–Meyer decomposition theorem. Several previously known arguments are included to keep the paper self-contained. Elsevier 2012-04 /pmc/articles/PMC4459556/ /pubmed/30976134 http://dx.doi.org/10.1016/j.spa.2011.12.001 Text en © 2012 Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Article Beiglböck, Mathias Schachermayer, Walter Veliyev, Bezirgen A short proof of the Doob–Meyer theorem |
title | A short proof of the Doob–Meyer theorem |
title_full | A short proof of the Doob–Meyer theorem |
title_fullStr | A short proof of the Doob–Meyer theorem |
title_full_unstemmed | A short proof of the Doob–Meyer theorem |
title_short | A short proof of the Doob–Meyer theorem |
title_sort | short proof of the doob–meyer theorem |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459556/ https://www.ncbi.nlm.nih.gov/pubmed/30976134 http://dx.doi.org/10.1016/j.spa.2011.12.001 |
work_keys_str_mv | AT beiglbockmathias ashortproofofthedoobmeyertheorem AT schachermayerwalter ashortproofofthedoobmeyertheorem AT veliyevbezirgen ashortproofofthedoobmeyertheorem AT beiglbockmathias shortproofofthedoobmeyertheorem AT schachermayerwalter shortproofofthedoobmeyertheorem AT veliyevbezirgen shortproofofthedoobmeyertheorem |