Cargando…
Data on force-dependent structural changes of chromatin fibers measured with magnetic tweezers
The compaction of chromatin fibers regulates the accessibility of embedded DNA, highly associated with transcriptional activities [1]. Single molecule force spectroscopy has revealed the great details of the structural changes of chromatin fibers in the presence of external exerted force [2–7]. Howe...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459773/ https://www.ncbi.nlm.nih.gov/pubmed/26217676 http://dx.doi.org/10.1016/j.dib.2014.08.002 |
Sumario: | The compaction of chromatin fibers regulates the accessibility of embedded DNA, highly associated with transcriptional activities [1]. Single molecule force spectroscopy has revealed the great details of the structural changes of chromatin fibers in the presence of external exerted force [2–7]. However, most of the studies focus on a specific force regime [2,3,8,9]. The data here show force-extension (FE) traces of chromatin fibers as measured with magnetic tweezers, covering the force regime from 0 pN to 27 pN. Those traces provide information for further studies at varied force regimes. |
---|