Cargando…

Steap4 attenuates high glucose and S100B-induced effects in mesangial cells

Six-transmembrane epithelial antigen of prostate 4 (Steap4)-knockout mice develop hyperglycaemia and inflammation whereas Steap4 overexpression attenuates atherosclerosis in diabetic mice. Thus, we studied the roles of Steap4 in high glucose (HG, 27.5 mM) or S100B (1 μM, a ligand for the receptor fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Chuang, Chao-Tang, Guh, Jinn-Yuh, Lu, Chi-Yu, Wang, Yeng-Tseng, Chen, Hung-Chun, Chuang, Lea-Yea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459839/
https://www.ncbi.nlm.nih.gov/pubmed/25817898
http://dx.doi.org/10.1111/jcmm.12472
Descripción
Sumario:Six-transmembrane epithelial antigen of prostate 4 (Steap4)-knockout mice develop hyperglycaemia and inflammation whereas Steap4 overexpression attenuates atherosclerosis in diabetic mice. Thus, we studied the roles of Steap4 in high glucose (HG, 27.5 mM) or S100B (1 μM, a ligand for the receptor for advanced glycation end-product or RAGE)-induced effects in mouse mesangial (MES13) cells. We found that HG-induced Steap4 protein expression was dependent on S100B. HG increased cell membrane, but not cytosolic, Steap4 protein expression. HG increased protein-protein interaction between Steap4 and S100B, which was confirmed by mass spectrometry of immunoprecipitated S100B. SP600125, LY294002 and AG490 attenuated S100B-induced Steap4 protein expression or gene transcriptional activity. A mutation in signal transducer and activator of transcription 3 (Stat3) site 2 of the Steap4 promoter constructs resulted in a marked decrease in HG or S100B-induced activation of Steap4 gene transcription. Overexpression of Steap4 attenuates HG or S100B-induced collagen IV, fibronectin and cyclooxygenase 2 protein expression. Overexpression of Steap4 attenuates HG or S100B-induced transforming growth factor-β (TGF-β). Moreover, overexpression of Steap4 attenuates S100B-induced signalling. Finally, overexpressing Steap4 attenuated renal expression of fibronectin, S100B, TGF-β, type IV collagen, p-Akt, p-extracellular signal regulated kinase 1/2 and p-Stat3 in streptozotocin-diabetic mice. Thus, overexpression of Steap4 attenuated HG or S100B-induced effects in MES13 cells and attenuated some of S100B-induced effects in diabetic mouse kidneys.