Cargando…

Brown Adipose Tissue Response Dynamics: In Vivo Insights with the Voltage Sensor (18)F-Fluorobenzyl Triphenyl Phosphonium

Brown adipose tissue (BAT) thermogenesis is an emerging target for prevention and treatment of obesity. Mitochondria are the heat generators of BAT. Yet, there is no noninvasive means to image the temporal dynamics of the mitochondrial activity in BAT in vivo. Here, we report a technology for quanti...

Descripción completa

Detalles Bibliográficos
Autores principales: Madar, Igal, Naor, Elinor, Holt, Daniel, Ravert, Hayden, Dannals, Robert, Wahl, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459998/
https://www.ncbi.nlm.nih.gov/pubmed/26053485
http://dx.doi.org/10.1371/journal.pone.0129627
Descripción
Sumario:Brown adipose tissue (BAT) thermogenesis is an emerging target for prevention and treatment of obesity. Mitochondria are the heat generators of BAT. Yet, there is no noninvasive means to image the temporal dynamics of the mitochondrial activity in BAT in vivo. Here, we report a technology for quantitative monitoring of principal kinetic components of BAT adaptive thermogenesis in the living animal, using the PET imaging voltage sensor (18)F-fluorobenzyltriphenylphosphonium ((18)F-FBnTP). (18)F-FBnTP targets the mitochondrial membrane potential (ΔΨm)—the voltage analog of heat produced by mitochondria. Dynamic (18)F-FBnTP PET imaging of rat’s BAT was acquired just before and during localized skin cooling or systemic pharmacologic stimulation, with and without administration of propranolol. At ambient temperature, (18)F-FBnTP demonstrated rapid uptake and prolonged steady-state retention in BAT. Conversely, cold-induced mitochondrial uncoupling resulted in an immediate washout of (18)F-FBnTP from BAT, which was blocked by propranolol. Specific variables of BAT evoked activity were identified and quantified, including response latency, magnitude and kinetics. Cold stimulation resulted in partial washout of (18)F-FBnTP (39.1%±14.4% of basal activity). The bulk of (18)F-FBnTP washout response occurred within the first minutes of the cold stimulation, while colonic temperature remained nearly intact. Drop of colonic temperature to shivering zone did not have an additive effect. The ß3-adrenergic agonist CL-316,243 elicited (18)F-FBnTP washout from BAT of kinetics similar to those caused by cold stimulation. Thus, monitoring ΔΨm in vivo using (18)F-FBnTP PET provides insights into the kinetic physiology of BAT. (18)F-FBnTP PET depicts BAT as a highly sensitive and rapidly responsive organ, emitting heat in short burst during the first minutes of stimulation, and preceding change in core temperature. (18)F-FBnTP PET provides a novel set of quantitative metrics highly important for identifying novel therapeutic targets at the mitochondrial level, for developing means to maximize BAT mass and activity, and assessing intervention efficacy.