Cargando…
ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif
Uncoordinated 51-like kinase 2 (ULK2), a member of the serine/threonine kinase family, plays an essential role in the regulation of autophagy in mammalian cells. Given the role of autophagy in normal cellular homeostasis and in multiple diseases, improved mechanistic insight into this process may re...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460075/ https://www.ncbi.nlm.nih.gov/pubmed/26052940 http://dx.doi.org/10.1371/journal.pone.0127784 |
_version_ | 1782375318193963008 |
---|---|
author | Shin, Sung Hwa Lee, Eun Jeoung Chun, Jaesun Hyun, Sunghee Kang, Sang Sun |
author_facet | Shin, Sung Hwa Lee, Eun Jeoung Chun, Jaesun Hyun, Sunghee Kang, Sang Sun |
author_sort | Shin, Sung Hwa |
collection | PubMed |
description | Uncoordinated 51-like kinase 2 (ULK2), a member of the serine/threonine kinase family, plays an essential role in the regulation of autophagy in mammalian cells. Given the role of autophagy in normal cellular homeostasis and in multiple diseases, improved mechanistic insight into this process may result in the development of novel therapeutic approaches. Here, we present evidence that ULK2 associates with karyopherin beta 2 (Kapβ2) for its transportation into the nucleus. We identify a potential PY-NLS motif ((774)gpgfgssppGaeaapslRyvPY(795)) in the S/P space domain of ULK2, which is similar to the consensus PY-NLS motif (R/K/H)X (2–5)PY. Using a pull-down approach, we observe that ULK2 interacts physically with Kapβ2 both in vitro and in vivo. Confocal microscopy confirmed the co-localization of ULK2 and Kapβ2. Localization of ULK2 to the nuclear region was disrupted by mutations in the putative Kapβ2-binding motif (P794A). Furthermore, in transient transfection assays, the presence of the Kapβ2 binding site mutant (the cytoplasmic localization form) was associated with a substantial increase in autophagy activity (but a decrease in the in vitro serine-phosphorylation) compared with the wild type ULK2. Mutational analysis showed that the phosphorylation on the Ser1027 residue of ULK2 by Protein Kinase A (PKA) is the regulatory point for its functional dissociation from Atg13 and FIP 200, nuclear localization, and autophagy. Taken together, our observations indicate that Kapβ2 interacts with ULK2 through ULK2’s putative PY-NLS motif, and facilitates transport from the cytoplasm to the nucleus, depending on its Ser1027 residue phosphorylation by PKA, thereby reducing autophagic activity. |
format | Online Article Text |
id | pubmed-4460075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44600752015-06-16 ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif Shin, Sung Hwa Lee, Eun Jeoung Chun, Jaesun Hyun, Sunghee Kang, Sang Sun PLoS One Research Article Uncoordinated 51-like kinase 2 (ULK2), a member of the serine/threonine kinase family, plays an essential role in the regulation of autophagy in mammalian cells. Given the role of autophagy in normal cellular homeostasis and in multiple diseases, improved mechanistic insight into this process may result in the development of novel therapeutic approaches. Here, we present evidence that ULK2 associates with karyopherin beta 2 (Kapβ2) for its transportation into the nucleus. We identify a potential PY-NLS motif ((774)gpgfgssppGaeaapslRyvPY(795)) in the S/P space domain of ULK2, which is similar to the consensus PY-NLS motif (R/K/H)X (2–5)PY. Using a pull-down approach, we observe that ULK2 interacts physically with Kapβ2 both in vitro and in vivo. Confocal microscopy confirmed the co-localization of ULK2 and Kapβ2. Localization of ULK2 to the nuclear region was disrupted by mutations in the putative Kapβ2-binding motif (P794A). Furthermore, in transient transfection assays, the presence of the Kapβ2 binding site mutant (the cytoplasmic localization form) was associated with a substantial increase in autophagy activity (but a decrease in the in vitro serine-phosphorylation) compared with the wild type ULK2. Mutational analysis showed that the phosphorylation on the Ser1027 residue of ULK2 by Protein Kinase A (PKA) is the regulatory point for its functional dissociation from Atg13 and FIP 200, nuclear localization, and autophagy. Taken together, our observations indicate that Kapβ2 interacts with ULK2 through ULK2’s putative PY-NLS motif, and facilitates transport from the cytoplasm to the nucleus, depending on its Ser1027 residue phosphorylation by PKA, thereby reducing autophagic activity. Public Library of Science 2015-06-08 /pmc/articles/PMC4460075/ /pubmed/26052940 http://dx.doi.org/10.1371/journal.pone.0127784 Text en © 2015 Shin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shin, Sung Hwa Lee, Eun Jeoung Chun, Jaesun Hyun, Sunghee Kang, Sang Sun ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif |
title | ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif |
title_full | ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif |
title_fullStr | ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif |
title_full_unstemmed | ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif |
title_short | ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif |
title_sort | ulk2 ser 1027 phosphorylation by pka regulates its nuclear localization occurring through karyopherin beta 2 recognition of a py-nls motif |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460075/ https://www.ncbi.nlm.nih.gov/pubmed/26052940 http://dx.doi.org/10.1371/journal.pone.0127784 |
work_keys_str_mv | AT shinsunghwa ulk2ser1027phosphorylationbypkaregulatesitsnuclearlocalizationoccurringthroughkaryopherinbeta2recognitionofapynlsmotif AT leeeunjeoung ulk2ser1027phosphorylationbypkaregulatesitsnuclearlocalizationoccurringthroughkaryopherinbeta2recognitionofapynlsmotif AT chunjaesun ulk2ser1027phosphorylationbypkaregulatesitsnuclearlocalizationoccurringthroughkaryopherinbeta2recognitionofapynlsmotif AT hyunsunghee ulk2ser1027phosphorylationbypkaregulatesitsnuclearlocalizationoccurringthroughkaryopherinbeta2recognitionofapynlsmotif AT kangsangsun ulk2ser1027phosphorylationbypkaregulatesitsnuclearlocalizationoccurringthroughkaryopherinbeta2recognitionofapynlsmotif |