Cargando…
Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.)
Phosphate-solubilizing and phytate-mineralizing bacteria collectively termed as phosphobacteria provide a sustainable approach for managing P-deficiency in agricultural soils by supplying inexpensive phosphate to plants. A phosphobacterium Bacillus subtilis strain KPS-11 (Genbank accession no. KP006...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460431/ https://www.ncbi.nlm.nih.gov/pubmed/26106383 http://dx.doi.org/10.3389/fmicb.2015.00583 |
Sumario: | Phosphate-solubilizing and phytate-mineralizing bacteria collectively termed as phosphobacteria provide a sustainable approach for managing P-deficiency in agricultural soils by supplying inexpensive phosphate to plants. A phosphobacterium Bacillus subtilis strain KPS-11 (Genbank accession no. KP006655) was isolated from potato (Solanum tuberosum L.) rhizosphere and characterized for potato plant growth promoting potential. The strain utilized both Ca-phosphate and Na-phytate in vitro and produced 6.48 μg mL(-1) indole-3-acetic acid in tryptophan supplemented medium. P-solubilization after 240 h was 66.4 μg mL(-1) alongwith the production of 19.3 μg mL(-1) gluconic acid and 5.3 μg mL(-1) malic acid. The extracellular phytase activity was higher (4.3 × 10(-10) kat mg(-1) protein) than the cell-associated phytase activity (1.6 × 10(-10) kat mg(-1) protein). B. subtilis strain KPS-11 utilized 40 carbon sources and showed resistance against 20 chemicals in GENIII micro-plate system demonstrating its metabolic potential. Phytase-encoding gene β-propeller (BPP) showed 92% amino acid similarity to BPP from B. subtilis (accession no.WP_014114128.1) and 83% structural similarity to BPP from B. subtilis (accession no 3AMR_A). Potato inoculation with B. subtilis strain KPS-11 increased the root/shoot length and root/shoot weight of potato as compared to non-inoculated control plants. Moreover, rifampicin-resistant derivative of KPS-11 were able to survive in the rhizosphere and on the roots of potato up to 60 days showing its colonization potential. The study indicates that B. subtilis strain KPS-11 can be a potential candidate for development of potato inoculum in P-deficient soils. |
---|