Cargando…
Graph pyramids for protein function prediction
BACKGROUND: Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction...
Autores principales: | Sandhan, Tushar, Yoo, Youngjun, Choi, Jin Young, Kim, Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460595/ https://www.ncbi.nlm.nih.gov/pubmed/26044522 http://dx.doi.org/10.1186/1755-8794-8-S2-S12 |
Ejemplares similares
-
Explainable fMRI‐based brain decoding via spatial temporal‐pyramid graph convolutional network
por: Ye, Ziyuan, et al.
Publicado: (2023) -
Entropy-Based Graph Clustering of PPI Networks for Predicting Overlapping Functional Modules of Proteins
por: Jeong, Hoyeon, et al.
Publicado: (2021) -
DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
por: You, Ronghui, et al.
Publicado: (2021) -
Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
por: Yang, Fang, et al.
Publicado: (2020) -
Predicting functions of maize proteins using graph convolutional network
por: Zhou, Guangjie, et al.
Publicado: (2020)